\documentclass[preview]{standalone}
\usepackage{amsmath}
\usepackage[flushleft]{threeparttable}
\usepackage{makecell,booktabs}
\begin{document}
\title{Multi-sensor Fusion Rules}
\newsavebox\independent
\begin{lrbox}{\independent} 
    $\begin{aligned}
     P_f &= (\sum_{i=1}^{n}  P_i^{-1})^{-1} \\ 
      \hat{x}_f &= P_f (\sum_{i=1}^{n} P_i^{-1} \hat{x}_i)
    \end{aligned} $
\end{lrbox}
%-------------------------------
\newsavebox\correlated
\begin{lrbox}{\correlated}
   $ \begin{aligned}
     P_f &= (e^T \Sigma^{-1} e)^{-1} \\
      \hat{x}_f &= P_f (e^T \Sigma^{-1} \hat{x})
    \end{aligned} $
\end{lrbox}
%-------------------------------
\newsavebox\uc
\begin{lrbox}{\uc}
   $ \begin{aligned}
      P_f &= (\sum_{i=1}^{n}  \omega_i P_i^{-1})^{-1} \\
      \hat{x}_f &= P_f (\sum_{i=1}^{n} \omega_i P_i^{-1} \hat{x}_i)
    \end{aligned}  $ 
\end{lrbox}
%-------------------------------
\begin{table}
  \caption{Multi-sensor Fusion Rules}
  \centering
  \begin{threeparttable}
 
    \begin{tabular}{cc@{\qquad}c}
      Types of Estimation Errors & Fusion Rules & Comments \\ \midrule\midrule 
        \makecell{No Correlations \\(Independent)} & \usebox{\independent} & Optimal \\
     \cmidrule(l r){1-3}
    \makecell{Known Correlations \\   (Correlated)} & \usebox{\correlated} \tnote{*} & Optimal \\ \cmidrule(l r){1-3}
      Unknown Correlations & \usebox{\uc} \tnote{**} &  \makecell{Suboptimal }\\ \midrule\midrule
    \end{tabular}
\begin{tablenotes}
  \item[*]  $e=[I, \cdots, I]^T$, $\Sigma=(P_{ij}), \; i,j=1,\cdots, n$, and $\hat{x}=[\hat{x}_1^T, \cdots, \hat{x}_n^T]^T$. 
  \item[**] Covariance intersection rule, where $\omega_i\in [0\,,1],\; \sum_{i=1}^n \omega_i=1$, and $\omega_i=\arg\min_{\omega_i\in[0\,,1]} \text{tr}\{P_{f}\}$.
  \end{tablenotes}
  
  \end{threeparttable}
  \end{table}
\end{document}