Math 250 Proof Portfolio

Your Name

December 4, 2019

Definitions

Definition. An integer x is even if $x=2 a$ for some integer a.
Definition. A rectangle is a quadrilateral all of whose angles are right angles. A square is a rectangle all of whose sides are congruent.

1 Proof by cases

Proposition. If X is a square, then X is a rectangle.
Proof. Suppose X is a square.
I'm going to demonstrate some of the cool ways that $\mathrm{EA}_{\mathrm{E}} \mathrm{X}$ can format mathematical expressions! Let s be the side length of X and A be the area of X.

Then we have $A=s^{2}$. Now suppose that s is an even integer. By definition, this means that $s=2 a$ for some $a \in \mathbb{Z}$. Then the area of X is

$$
A=s^{2}=(2 a)^{2}=4 a^{2}
$$

which we also could have formatted over multiple lines as

$$
\begin{aligned}
A & =s^{2} \\
& =(2 a)^{2} \\
& =4 a^{2},
\end{aligned}
$$

which shows that A is a multiple of 4 , i.e., $A \equiv 0(\bmod 4)$.

We can format set-builder notation like this:

$$
\{2 n: n \in \mathbb{Z}\} \subseteq\{m \in \mathbb{Z}: 4 \mid m\}
$$

Now suppose that the side length of X is a function of t, where $t \in \mathbb{R}$. Then by the chain rule, the derivative of the area is $\frac{d A}{d t}=2 s \frac{d s}{d t}$, which we could also have formatted as $\frac{d A}{d t}=2 s \frac{d s}{d t}$ if we wanted to make the fractions larger. The net change in the area from $t=t_{1}$ to $t=t_{2}$ is

$$
A\left(t_{1}\right)-A\left(t_{2}\right)=\int_{t_{1}}^{t_{2}} \frac{d A}{d t} d t .
$$

Notice how I put a period at the end of that sentence!
I said this was a proof by cases, so let's see how to format lists. Either X is small or X is large. Let's consider those two cases separately:

1. Suppose X is small ...
2. Suppose X is large ...

Here's how to create a bulleted list:

- Case 1: Suppose X is small ...
- Case 2: Suppose X is large ...

By the way, since a square is by definition a rectangle all of whose sides are congruent, X is also a rectangle. This completes the proof. Marvel at how ${ }^{A} T_{E X}$ will create the "end-of-proof-box" automatically:

2 Congruence modulo n

3 Proof by contrapositive

4 Proof by contradiction

5 Induction

6 A proof that a function is bijective

7 The triangle inequality

8 The Pythagorean theorem

Use brackets to give a theorem a name in parentheses:
Theorem (Pythagorean theorem). For every right triangle with legs of lengths a and b and hypotenuse of length c, we have that $a^{2}+b^{2}=c^{2}$.

Compare to:
Theorem. This theorem does not have a name in parentheses since I did not use the brackets.

You could cite a source by saying something like: The idea of the following proof, which is originally due to Euclid, has been borrowed from [2].
Proof. Here's the proof.

9 A proof not from this course

References

[1] R. Hammack, Book of Proof. Third edition. 2018.
[2] Wikipedia contributors, Wikipedia, "Pythagorean theorem". https://en.wikipedia.org/w/index.php?title= Pythagorean_theorem \&oldid $=918079404$. Online; accessed October 15, 2019.

