Exterior Angle Theorem

Sarah Wright

February 5, 2018

Write a (very brief) introduction here. You should include the name of the original presenter of the result, and (if appropriate) the name of the person who posed the question or conjecture originally. Also include the names of any other helpful persons to your write-up, the presentation, or the solution itself.

Include some narrative that will connect this result to others or give some of the background on the questions or conjectures the result answers. (This will be easier in some cases than others; don't worry too much about being eloquent here ...focus on the art of proof-writing first.)

Proposition I.15. The exterior angle of a triangle is greater than either of the interior and opposite angles.

Proof. Let $A B C$ be a triangle, and extend segment $B C$ to point D by Euclid's Postulate 2. We wish to show that exterior angle $A C D$ is greater than each of the interior angles $C B A$ and $B A C$.

Construct E to be the midpoint of segment $A C$, by Euclid I.10, and construct the segment $B E$ by Euclid's Postulate 1 and extend $B E$ beyond point E by Euclid's Postulate 2. Using Euclid I.3, construct the point F on the extended segment $B E$ such that $B E$ is congruent to $E F$. Construct the segment $C F$ by Euclid's Postulate 1.

Figure 15: $\overline{A E} \cong \overline{E C}, \overline{B E} \cong \overline{E F}, \overline{B H} \cong \overline{H C}$, and $\overline{A H} \cong \overline{H I}$.

Segments $A E$ and $E C$ are congruent by construction; as are segments $B E$ and $E F$. Since angles $A E B$ and $C E F$ are vertical angles, they are also congruent by Euclid I.15.
Thus, by Euclid I. 4 (SAS congruence) triangles $B A E$ and $C E F$ are congruent and angle $E A B$ is congruent to angle $E C F$.

Angle $E C D$ is greater than angle $E C F$ by Euclid's Common Notion 5. Therefore, angle $E A B$ is greater than angle $E C D$.

This shows that the exterior angle, namely $A C D$, is greater than one of the interior opposite angles, namely $C A B$.
To show that the exterior angle is also greater than the remaining opposite interior angle, $A B C$, similarly extend segment $A C$ to G, bisect segment $B C$ at H, construct the segment $A H$, and extend to I such that segments $A H$ and $H I$ are congruent. The analogous argument shows that triangles $A B H$ and $I C H$ are congruent, making angles $H B A$ and $H C I$ congruent. But, angles $A C D$ and $H C G$ are congruent, and angle $H C G$ is greater than $H C I$. This shows that the exterior angle $A C D$ is greater than the opposite interior angle $A B C$ as desired.

If there is any narrative that makes sense here, or closing remarks, feel free to include something. ©

