
Yellow Paper

Be The Only Key
Season 1

A Truly Decentralized
and Limitless Network

14th July 2019

1011011010011000101100000001010001010011110000

Information Technology has propelled Humanity to the heart of a new paradox.
Every individual must own a digital identity to have economic and social interactions (e.g.
Network Registration, Platform Logins, Online Payments, App Subscriptions, Chats, File
Sharing) ... Without a digital identity, everything is locked. It has become mandatory to
exist. However, today, no solution has been found to protect or control this identity. There
is no way to be authenticated in an absolutely secure and certain way. There is no way for
an individual to prove that they are the one connecting, nor to guarantee that no one else
will be able to connect in their place - While, it has never been easier to take control of
someone’s digital identity (social engineering, zero-days vulnerabilities, etc.).

How will it be possible to guarantee complete trust in an information system without need
of trusted third parties? Or, more precisely: how can we ensure that a system, that we know
in advance some will try to hijack, can guarantee the security of data and information? The
principles of Blockchain and in particular the Bitcoin network provided a perfect answer to
that issue. However, despite its conceptual perfection and effective robustness demonstrated
over the last decade, several weaknesses have emerged:
– Complexity for users to secure and safeguard their wallets keys,
– Limited scalability that prevents massive utilization and hence global adoption,
– Too much energy consumption,
– Professionalization and pooling of the miners that has led to a form of recentralization,
– Fratricidal governance that ignores a key actor: the user

Current Blockchains do not address the crucial problem of securing identity either: How
to guarantee the identity of a user behind a transaction without any disclosure of personal
information? How to open your house door, start your car, save your bitcoin keys, pay, vote...
etc. without the need for a password or an object (card, badge, smartphone)? Passwords
get forgotten, copied and hacked while Objects get lost, left behind, broken or stolen.

Best solution for user identity remains using the human body itself, in a way it has never
been used before. Existing biometric solutions consist of storing and comparing images (Fa-
cial recognition, Fingerprint recognition, Retinal recognition), which still carry the risk of
breaches similar to the ones mentioned above. To address that challenge Uniris brings a
technology that uses the fundamental differentiation between individuals, independent from
any personal device. On that basis generate, on the fly, a reproducible/adaptable cryp-
tographic keys that get deleted after use, never stored, enabling individuals to have full
control over their identity. This new type of access is provided through a blockchain that
takes advantage of the lessons learned from the Bitcoin network and preserves the best of
it: “a decentralization capable of proving that the control is not retained by some, but by all”.

In the following document and through five successive publications, we present the Uniris
solution and how its blockchain provides a counterpoint to every single weakness of current
blockchains – provides a decentralized and interoperable identity for every use-case – supports
millions of transactions per second avoiding known security breaches – provides a governance
integrating the community as a whole and, finally, offers the prospect of a tamper-proof,
universal and risk-free human-machine interaction system.

2

The Yellow Paper of the Uniris network is divided into 5 Seasons :

Season 1 A truly decentralized and limitless network
Season 2 Applications anchored in real life
Season 3 Governance and Economic System tailored for humanity
Season 4 Universal and Truly Decentralized Identification
Season 5 Augmented Human

Unlimited
Frictionless
TrustNet

Decentralized
Identity
Layer
Season4

IoT
Season4

Organizations
Individuals

Group
Season4

Certif.

DNS ...

Delegat. Humans

devices
Season4

Wheel of
Privacy
Season2

ZKP
biometrics

Season5

Keychains
Season4

Miners
Nodes Blockchain

Layer

Mining
(1.2)

Atomic
Com-

mitment

Proof
of Work

Upgrad.
Smart-

Contracts
Season2

Triggers
Season2

Content
Season2

HTML
JSON

...

Ledgers
Season2

UCO
NFT Stock

Mgmt

Heuristic
Election
(1.2.2)

Polymorphic
Storage
(1.3.2)

Network
Layer
(1.4)

P2P
(1.4.2)

Geo
location
(1.3.3)

Data
Mgmt
(1.3.5)

Adaptable
Crypto
(1.5.2)

Incentives
Season3

Permissionless
(1.4)

Prediction
Layer
(1.6)

Autorepair
(1.3.4)

On-Chain
DAO

Governance
Season3

IP &
Opensource

Season3

GPL3

DApps

Voting
Season3

Identity
& Access
Season4

Payments
Season2
Season3

NFT

Currencies Loyalty

Supply
Chain

MarketPlace
Season2

API

3

Season 1
A Truly Decentralized & Limitless Network

Given the universal constraints both material and physical, billions of transactions cannot
be integrated into a single branch of chained blocks. Similarly, regardless of the consensus
method, it is not possible to ensure universal consensus on billions of transactions by
polling all nodes of the network. Finally, the functioning of current distributed networks
(P2P) is such that it is not possible to guarantee the freshness (consistency) of data on an
asynchronous network, unless the network is slowed down excessively by the calculation
of the nonce of the block (PoW), as is the case with the Bitcoin network.

Uniris has resolved those 3 issues in the following way:
Transaction Chains: Instead of chained blocks of transactions, each block is reduced
to its atomic form, i.e. each block contains only one transaction and each transaction will
be chained in its own chain.

ARCH Consensus (Atomic Rotating Commitment Heuristic): This is a new
generation of universal consensus allowing atomic commitment by a heuristic rotating
election of a tiny set of validation nodes instead of polling the whole network.

Predictive, Optimized, Self-repair Replication System: Instead of synchroniz-
ing transactions anarchically on the whole network, every single transaction chain will
be stored in a deterministic way and ordered on a set of nodes. Thus, every node will
autonomously know all the nodes hosting a given transaction chain and hence ease the
network by only interrogating the nearest elected nodes.

A Distributed Network without bottlenecks: Based on Supervised Multicasting,
the peer-to-peer network uses a self-discovery mechanism based on incoming connections
and the network transactions chains mechanism to maintain a qualified and trusted vision
of the network while limiting to the maximum new requests.

Season 1 specifically addresses the following topics:

The Unexplored Eldorado of Transactions Chains .6
ARCH : An Uncompromising Consensus allowing to reach the million txn/sec . . . 11
Storage Capacity Increase by tenfold & Geographically Secure 18
Open, Optimized and Structured Distributed Network .27
Security Beyond Known Solutions . 33
A Network Capable of Reconfiguring Itself to Prevent Disasters 38
Energy Consumption: 1 Billion times less, 0.1g of sugar . 41

4

Alice’s Keychain

Network

Country ID Key1, Key2
UCO Key1, Key2
Smart-Contract1 Key1
BitCoin Key
Ether Key …

Alice recovers her decentralized
 biometric’s Keychain, generates
 the transaction and transmits

 it to a Welcome Node

@Alice #2
10 UCO to @Michelle

Heuristic Rotating
Coordinator Node

generates Pow &
transaction stamp

Coordinator & Cross validation Nodes
recover full @Alice chain, unspent outputs …
by requesting each associated Storage Pool

Heuristic Rotating Cross
Validation Nodes cross validate
the Coordinator stamp & PoW

Heuristic Rotating
Storage Pools calculation
based on transactions
addresses : @Alice#2,
@Michelle#2, Nodes
involved inside the mining
and the storage of the
associated transactions

 P
re

di
ct

io
n

M
od

ul
e

#
1

DA
O

 #
1

DA
O

 #
2 M
in

in
g

Al
go

 #
1

 M
in

in
g

Al
go

 #
2

 @
Al

ice
G

oo
gl

e
#

1

 M
in

er
1

ID
 #

1

 @
Al

ice
G

oo
gl

e
#

2

 M
in

er
1

ID
 #

2
 M

in
er

1
ID

 #
3

Identities Smart-contracts & Ledgers

 S
m

ar
tC

 #
1

@
Al

ice
 #

1

@
M

ich
ell

e
#

1

 @
M

ar
ke

tP
la

ce
Bo

b
#

1

UN
-ID

 #
1

 C
ou

nt
ry

Vo
te

 #
1

 S
m

ar
tC

 #
2

 S
m

ar
tC

 #
3 @

A
lic

e
#

2

@
M

ic
he

lle
 #

2

 @
M

ar
ke

tP
la

ce
Bo

b
#

2 UN
-ID

 #
2

UN
-ID

 #
3

 C
ou

nt
ry

Vo
te

 #
2

Encrypted with
Alice’s Public Keys

Contains the user’s private keys and
the pointers keys (others digit
pointers, smart-card, IoT …)

Contains all Public Data (smart-
contracts chains, Decentralized Identities
chains for Nodes, Organizations, Groups,
IoT, Individuals etc …)

Decentralized Keychains Smart-contracts & Identities Chains

Alice

Michelle

Humans, Organizations, Groups, IoT Keychains

Figure 1.1: Uniris Chain Overall Functioning

5

1.1 | The Unexplored Eldorado of Transactions Chains

As described above, each block is reduced to its atomic form, i.e. each block is a
transaction with its own validation evidences that will allow it to be associated with a
given chain. Each transaction also has an additional signature (Figure 1.2) corresponding
to the signature of the device that generated the transaction. This signature is used
inside the Proof of Work mechanism and can be integrated as a necessary condition for
the validation of a transaction (for example, in the context of an electronic vote, this will
ensure that a person’s biometric identity is generated only through a recognized device).

basic-txnEN

Transaction’s
address

Hash of the Prev-PubKey
corresponds to the previous
address of the chain

Digital Identity, ledger
operation, Network …

Operation to be
performed, i.e. 3 UCO to
@Bob

Signature of the device or
software which originated the

transaction (PoW)

 @addr type timestamp DATA Prev-PubKey PrevKey Sig OriginKey Sig

Figure 1.2: Pending Transaction

Validation Stamp generated
by the Node elected as

coordinator from the
Heuristic Algorithms.

Cross-Validation Stamp generated from the
validation stamp forwarded by the Coordinate

Node and generated by as many as nodes required
by the Heuristic Algorithms

validatedtxnEN

Validation
Stamp

Cross
Validation
Stamp1

Cross
Validation
Stamp2

Cross
Validation
Stamp …

 @addr type timestamp DATA Prev-PubKey PrevKey Sig OriginKey Sig

Figure 1.3: Validated Transaction

The principles of Transactions Chains are as follows:

Principle 1. Pending Transaction is a transaction that does not have proof of network
validation. To be processed by the network, this transaction must have the following
information (Figure 1.2) :
@addr An unused address that corresponds to the hash of the public key of the

transaction that will succeed it in the chain.
type A type defining the functional role of the pending transaction.
timestamp The date and time of the transaction generation.

6

DATA Data zone containing all the operations to be performed (operation on one of
the registers, programmed tasks, smart-contracts, operations on an identity,
etc.)

Prev-PubKey The public key associated with the previous transaction (the address of the
previous transaction being the hash of this public key)

PrevKey Sig Signature from the private key associated with the mentioned public key
to prove the possession of the private key, the chaining of transactions and
the content of the transaction (address, type, timestamp and data area
"DATA").

OriginKey Sig Signature from the private key associated with the device or software from
which the pending transaction was generated. This signature is used for the
proof of work of the nodes (1.2.4).

Principle 2. Validated Transaction is a pending transaction completed with the val-
idation proofs required by the Heuristic Algorithms. These validation proofs are defined
as follows (Figure 1.3):
Validation Stamp The stamp generated by the elected coordinator node and containing:

Proof of integrity proving the linkage of the previous transactions
PoW result of the Proof of Work
Ledgers Operations contains all the ledger operations that will be taken
into account by the network:
– the ledger movements mentioned in the pending transaction

DATA/Ledgers along with the issuer’s signature.
– the list of unspent transaction outputs (UTXO) of the sender’s chain on

the address of the new transaction.
– the ledger movements to the nodes that participated in the validation

and retrieval of the data (effective payment of the welcome, coordinator,
cross-validation nodes and nodes from which the data were downloaded)
DATA/Ledgers/Fee – the fees can be mentioned explicitly or not men-
tioned (if not, the costs will be calculated by the coordinator node).

Cryptographic signature of the Validation Stamp of the coordinating
node, the public key being already mentioned in the list of beneficiaries of
the fees.

Cross Validation Stamps To be considered as valid, the Validation Stamp must be joined
by as many Cross Validation Stamps as required by the Heuristics Algo-
rithms. Cross Validation Stamps are the signatures of the Validation Stamp
by each of the cross-validation nodes (in case of inconsistency or disagree-
ment it will contain the list of inconsistencies noted, all signed by the cross
validation node).

Principle 3. Transactions Chains Each validated transaction is stored as a chain that
can only be updated from the last validated transaction in the chain.

Principle 4. Network Transactions Chains Identical to other transactions chains
but use different validation and replication algorithms. Network transactions chains are
replicated on all nodes.

7

Principle 5. Heuristic Algorithms Set of algorithms, software and configuration files
stored in the form of chains and belonging to the "Network Transactions Chains". This
includes, but not limited to, election of validation and storage nodes, updating of node
keys, Shared Secrets, Interpreters, Prediction Module, Beacon Chain management, etc.

Principle 6. Principles of Replication After a transaction has been validated, the
validation nodes will be in charge of applying the following replication process:
- All transactions associated with the same chain must be replicated on the storage nodes
associated with the address of the last validated transaction in the chain. Transactions
chains associated with network operation must be fully replicated on all nodes (Node
chains, algorithms, decentralized softwares, etc.).

- Each validated transaction must be replicated on the storage nodes associated with the
addresses of the associated transactions (input/output).

- Each transaction address must be replicated on the storage nodes of the associated
address subset (Beacon Chains).

Principle 7. Principles of Synchronization Each node as soon as it arrives on the
network must permanently synchronize the transactions chains for which it has been
elected as storage node from the Heuristic Algorithms and from the addresses of the last
transactions of the chains, each node must also synchronize the transactions to the chains
(in particular unspent outputs) as long as they are not integrated in a validation stamp
(i.e. as long as they have not been consumed in a new transaction as a spent output Self
Repair and Reconfiguration of the network).

Principle 8. Node Authentication To participate in the network, each node must be
authorized and authenticated through a valid transaction chain. Therefore, as soon as
its key has expired or when information necessary for the network is modified (IP, port,
protocol), the node must regenerate a new transaction on its chain.

Principle 9. Management of Anomalies by Consensus In case of inconsistency or
disagreement on the validity of a "transaction in the process of validation", any elected
node associated with the validation or storage process may then submit this "potential
anomaly" to a validation pool (via a public election process) which must decide on the
validity of the transaction and, if applicable, on the origin of the anomaly (network
problem, ambiguity of the transaction or maliciousness characterized).

Principle 10. Management of "Malicious" Nodes If the origin of the anomaly as-
sociated with the invalidity of a "transaction in the process of validation" is ruled as
"Malicious", then the nodes associated with the validation of a "validated transaction"
finally defined as invalid will be banned from the network.

Principle 11. UTXOModel A validated transaction cannot change state (i.e a stateless
UTXO model1), which means that there is no reality outside the validated transactions –
each user can check the validity of previous transactions.

1Only an unspent transaction output (UTXO) can be spent/used as an input into a new transaction.

8

Definition 1. To ensure the atomicity property of the validation of a pending transaction
with a margin of error of 10−9 and always considering that potentially 90% of the network
could be "malicious", the number of "nv" nodes involved in transaction validation and
chain replication must always satisfy the following property:

∀ nv ∈ N,
0.1×n∑
k=1

(
0.1×n

k

)
×
(
0.9×n
nv−k

)(
n
nv

) ≈ 10−9 (1.1)

where:
nv : is the number of nodes involved in the validation ;
n : is the total number of nodes in the network.

A pending transaction must receive unanimous, positive and consistent agreement from
all nodes nv to be considered as validated.

Application: (Definition 1) For a network with 100,000 nodes (n = 100,000) then for a
pending transaction to be validated it will need 197 distributed confirmations between the
validation nodes and the storage nodes (nv=197)

As a corollary:

Remark 1. (Principle 3) The address of any transaction in the same chain could be used
as a destination address, it is not necessary to specify the last transaction in the chain.
(The nodes will automatically replicate the transaction on the storage pool associated with
the last transaction in the chain).

Remark 2. (Principle 3) In terms of security, once the public key is disclosed, it is
considered expired, only the hash of the public key of the next transaction @addr is
announced, which allows to keep the public key secret until the next transaction on this
same chain (thus correcting and combating the problem of repeated use of the same
ECDSA key) .

Remark 3. (Principle 3 – 6) When updating a transaction chain through a new validated
transaction at the end of the chain. The nodes in charge of storing the chain before the
arrival of the new transaction will then be able to stop their synchronization of the chain’s
data. The new storage nodes now being the referenced storage nodes elected from the
address of this last transaction (see 1.4.1 – 1.10).

Remark 4. (Principles 3 – 6) In terms of sequencing, this means that all outputs of a
given chain must be serialized (Alice to {Bob, Tom, etc.} then later, Alice to {Michelle}
etc.), but an unlimited number of transactions can be sent to the same transaction chain
(Bob to {Alice} in the same time than Tom to {Alice}, Michelle to {Alice}, etc.) – This
means that a new transaction on a specific transaction chain must wait until the end of
the validation of the previous one (1 to 3 seconds), but an almost unlimited number of
transactions/second can be sent at the same time to the same chain.

9

Remark 5. (Principle 2 – 11) The list of unspent outputs does not need to be specified
by the sender of the transaction, all unspent or unused outputs are reintegrated directly
into the last transaction in the sender’s chain and by the Coordinator Node inside the
Validation Stamp - allowing nodes to directly find all unspent outputs on the storage
nodes of the last transaction and allowing the user to avoid the costly search phase of
unspent outputs.

Remark 6. (Principle 11) Like the Bitcoin network protocol, the Uniris network uses the
Principle of the UTXO model for the sake of security and non-repudiation of transactions,
which means that there is no reality outside the validated transactions. Thus, unlike
smart-contracts such as those running inside virtual machines (Ethereum, EOS, etc.),
Uniris smart-contracts cannot change their state once validated. This is made possible
without reducing the ability to handle numerous disparate use cases (see. Season 2 :
Smart-Contracts).

Remark 7. (Principles 3, 4 and 8) The figure 1.4 below represents four types of chained
transactions (a chain associated with the identity of a network node, a chain associated
with the identity of a person, a chain associated with a UCO wallet (Uniris Coin) and a
smart contract chain). The first transaction in the chain (i.e genesis) is widely used as the
reference for the chain and the last transaction is the only one that can be updated by a
new transaction (the address "@node0-3" announcing the hash of the public key that will
allow to verify the possession of the private key, thus allowing the chain to be updated).

 @node0-0 / @node0-0 PubKey @node0-1 / @node0-0 PubKey @node0-2 / @node0-1 PubKey @node0-3 / @node0-2 PubKey

 @Id0-0 / @Id0-0 PubKey @Id0-1 / @Id0-0 PubKey @Id0-2 / @Id0-1 PubKey

 @Uco0-0 / @Uco0-0 PubKey @tUco0-1 / @Uco0-0 PubKey @Uco0-2 / @Uco0-1 PubKey @Uco0-3 / @Uco0-2 PubKey

basics

 @smartcontract0-0 / @smartcontract0-0 PubKey @smartcontract0-1 / @smartcontract0-0 PubKey

Genesis Transactions

 @smartcontract0-2 / @smartcontract0-1 PubKey

Authoritative Transactions

Figure 1.4: Examples of transaction chains

10

1.2 | ARCH : An Uncompromising Consensus allowing to
reach the million txn/sec

D
ata

consistencyFa
ul

t
T
ol

er
an

ce

Security (ARCH)

The Uniris network is based on three properties:
– Security: based on the consensus ARCH, each

transaction is validated atomically.
– Data Consistency: based on heuristic storage

algorithms that guarantee access to the latest write
but also a maximum data availability.

– Fault Tolerance: based on heuristic validation
algorithms that allow nodes to work independently
even in the event of a network disaster.

ARCH Consensus or "Heuristic Rotating Atomic Commitment (ARCH)" is a new
generation of Consensus. Below is a detailed explanation of each concept of ARCH:

Atomic Commitment is the form of "absolute" consensus that implies 100% con-
cordant responses for the acceptance or refusal of the transaction validation

Heuristics is the set of algorithms, softwares and parameters that manage the entire
network, allowing the network to elect in a decentralized and coordinated way
the nodes in charge of validating and storing transactions chains.

Rotating the network being fully distributed (no central or privileged role), the
nodes elected for each operation are constantly changing so that no node can
predict which nodes will be elected until the transaction arrives.

The Uniris network is based on hypergeometric distribution laws which, from an
unpredictable election and a formal consensus, make it possible to obtain with certainty
(99.9999999%) the same answer by querying 197 nodes as would be obtained by querying
100,000 (Network Resilience & Malicious Operations Detection [1.5.1]). In other words,
this mathematical law makes it possible to obtain an universal consensus from a small
part of the nodes - this property thus enters into the Heuristics concept widely used on
the whole network. The risk of the related availability is ensured by a strict management
of the disruptive nodes (Principles 8, 10 and 11), which are banished after investigation
of the origin of the disagreement.

11

These concepts are defined in the following sections:

Heuristic Algorithms . 12
Global, Unpredictable and Reproducible Election .13
Transaction validation process .14
Proof of Work .15
Protection against Double, and also Multiple Spending . 17

1.2.1 Heuristic Algorithms
Heuristic Algorithms are made up of softwares (interpreters, libraries, etc.) and configu-
ration files (Principle 5).

To provide a trusted and fully decentralized network, there is the problem of trust on
the software and hence the algorithmic layers of the network. Indeed, how to achieve
atomic validation of a transaction if the nodes do not use the same algorithms and
interpreters and hence, how to differentiate a malicious node from a simply obsolete
node. Similarly, it is not possible to ensure the reality of decentralized governance if the
nodes are autonomous in choosing the software/algorithmic layer they use.

To solve these problems, Heuristic Algorithms/Softwares are stored in a decentralized
way as transaction chains or more precisely as smart-contract chains. The governance
and operation of the associated smart-contracts being fully configurable: Self-Triggable,
protected by Inherited Recursive Constraints (Season 2) and under the control of the
community (Season 3).

The example in the figure 1.5 below represents a module stored with its source code in
the DATA/Content area and containing Inherited Recursive Constraints

condition:
…
Actions:

inherit:
...

 "content": {
 "name": "transaction/validation.ex",
 "checksum": "d65184ae35d0f7110d874",
 "source": "defmodule Transaction.Validation do …. end"
 }
}

Smart-Contracts Content

binary

 @addr type timestamp DATA Prev-PubKey PrevKey Sig OriginKey Sig

Figure 1.5: Decentralized software version management and Heuristic Algorithms

12

1.2.2 Global, Unpredictable and Reproducible Election
To achieve an unpredictable, global but locally executed, verifiable and reproducible elec-
tion of transaction validation nodes, the Heuristics Algorithms are based on
– an unpredictable element: the hash of the transaction content,
– an element known only by the authorised nodes: the Daily Nonce included in the

Shared Secrets of the nodes and renewed daily (Figure 1.19),
– an element difficult to predict: the last public key of the node chain: Last Node Pubkey,
– the computation of the Validation Rotating Keys
This computation works as follow:

RotatingKeyNodePubkey = Hash(Last Node Pubkey, Daily Nonce, hash(transaction content)) (1.2)

The figure 1.6, below, schematically represents how the algorithms work to get a filtered
list of validation nodes (i.e Validation Pool):

valid-electEN

78bb10206c735deb…
6637e7a773d9bd0b…
8d845ea17b3d29bd…
ea6345006ffd261c…
3f4d52fb804d0e26…
032fd4e71fd6fe33…
ed55aec6de8bf5e4…
…
4a3fc0c64d62d3bd…
1c53b4e57e411a74…
d685c5732ca832f5…

nodeA
nodeB
nodeC
nodeD
nodeE
nodeF
nodeG
…
nodeX
nodeY
nodeZ

29e1b5a0cd7d4ed3…
f46eb543962a4241…
a81d02f0915495a5…
d6135e614dba002d…
0e828204f29dd905…
29ecce60524313e6…
61ec8b109deb8ea7…
…
995808748e84d042…
0619238a40afde2b…
19d1d2f32def84e2…

List of the last public keys
of nodes

Rotating keys
computation

Heuristic Algorithms require a minimum
of 3 nodes over 3 distinct geographical
areas

≥ 3

P2
P a

vai
lab

ilit
y

Av
era

ge
ava

ilab
ilit

y

Sor
ted

 lis
t o

f th
e

rot
ati

ng
key

s

Geog
rap

hic
 ar

ea

Netw
ork

 co
ord

ina
tes

NodeY and NodeX have been dropped from the list
because they are already part of the elected storage nodes

Local consolidated & Beacon view

nodeY
nodeE
nodeZ
nodeA
nodeF
nodeG
nodeX
nodeC
nodeD
nodeB
…

0619238a40afde2b…
0e828204f29dd905…
19d1d2f32def84e2…
29e1b5a0cd7d4ed3…
29ecce60524313e6…
61ec8b109deb8ea7…
995808748e84d042…
a81d02f0915495a5…
d6135e614dba002d…
f46eb543962a4241…I
…

1
1
1
1
0
1
1
1
0
1
…

2AD
AAE
DDB
ADA
3C1
DDE
DDA
2AC
FCD
3EC
…

9
2
7
8
3
9
1
7
8
9
…

22A
A3B
D8A
A1D
A4C
D58
D24
24C
F17
375
…

NodeA and NodeG have been dropped from the list
because they are in an already selected geographical areaHeuristic Algorithms Constraints

Figure 1.6: Election of Mining Validation Nodes

The purpose of the rotating keys calculation is to provide an unpredictable and repro-
ducible ordered list of the allowed nodes. The scheduling thus obtained allows each of
the nodes to find autonomously and share the list of nodes that will be in charge of the
validation of the transaction. This list is then filtered according to the constraints of the
Heuristic Algorithms from the consolidated views of the nodes consisting of:
– The view of the local network of the node(Figure 1.17)
– Update of replicated network chains across all nodes (Principle 5)
– Information provided by beacon chains (Figure 1.15)
– Constraints added by the prediction module (Figure 1.21)
Since this validation is a one-time process, the priority criteria taken into account are the
availability of the node at the time of the election, the geographical area, the number of
nodes to be elected and the list of storage nodes that will participate in a second phase
to the validation of the transaction (1.3.2).

13

1.2.3 Transaction validation process
The diagram below illustrates the validation process of a UCO (Uniris Coin) transfer
transaction in a simplified way:

 @Alice2 PubAlice1

Alice

Bob

Tom

 @Tom8 PubTom7
Fee : 0.005
5 to @Alice

Fee : 0.003
3 to @Bob

UCOTransferEN

5 UCO

3 UCO

Coordinator Node  
elected by Heuristic Algo.

Cross Validation Nodes 
elected by Heuristic Algo.  

(Node 1, 2, 3, …)

Welcome Node (any)

 Storage Pool
of @Tom8

 Storage Pool
of @Alice1

Storage Pool  
of the Beacon Chain  
related to @Alice2

Storage Pool  
of the nodes related  

to the transaction validation

 Storage Pool
of latest @Bob transaction

 Storage Pool
of @Alice2

7

7

3

3

1

2

4

5

Validated @Alice2

Validated @Alice2

Chain

Outp
uts

8

9

Validated @Alice2

7a

7b

7b

7c
7b

7b

6

Figure 1.7: Transaction validation process

1 Alice sends the @Alice2 transaction to any
node in the network (welcome node) through the
"Seeds" list (1.4.3)
2 The welcome node determines the validation
nodes (coordinator and cross-validation) using
Heuristic Algorithms (1.2.2), then forwards the
transaction to the chosen nodes so that they can
start the pre-validation work.
3 The elected nodes (coordinators and cross
validation nodes) get all the transactions nec-
essary for validation from the closest storage
nodes (1.3.3) : the complete chain on the storage
nodes of the transaction @Alice1 (1.3.2), and all
transactions related to unspent entries (UTXO)
@Tom8... on the respective storage pools.
4 Once the context of the transaction has been
rebuilt, the cross-validation nodes communicate
to the coordinating node the list of storage nodes
used to collect the data and their views on the
availability of the validation and storage nodes.
5 The Coordinator node, later has to rebuild
the context of the transaction (chain, inputs, out-
put), figure out the proof of work (PoW), compute
the replication tree , define the operations on the
ledgers and sign the validation stamp (Validation
Stamp – Principle 2) and transmit it to the cross

validation nodes.
6 The content of the Validation Stamp is verified
by each cross-validation node which will further
issue a "Cross-Validation Stamp" to the coordi-
nator and other cross-validation nodes (Principle
2).
7 Once all the Cross-Validation Stamps are re-
ceived by each validation node, they can start the
replication process of the validated transaction,
as defined by the Coordinator node:

7a the storage pool of the @Alice2 chain will
recover the context of the transaction, if every-
thing is compliant, store it in its local database
and 8 notify the validation and welcome nodes
of the completeness of the replication.
7b The storage pools assigned to @Bob and
the nodes involved will check the transaction’s
compliance and integrate it into their db.
7c The storage pool related to the Beacon
Chain (1.4.1) will check the compliance of the
transaction and integrate the timestamp and
the addresses involved @Alice1, @Alice2, @Bob
into the Beacon chain.

9 The welcome node will notify the user of the
transaction validation progress

14

1.2.4 Proof of Work
The Bitcoin and networks based on the principle of Proof of Work (PoW) ensure an
unpredictable and pseudo-random election of the nodes in charge of the validation of
the blocks (mining). They also ensure that the network remains synchronous and that
each node will have time to recover the previous blocks, thanks to the time required to
calculate this proof of work (10min).

On the Uniris network:
– The election of the unpredictable and pseudo-random validation nodes is ensured by

the Heuristic Validation Algorithms (Figure 1.6).
– The synchronization of the data is ensured by the Heuristic Algorithms for replica-

tion of data, which provide the knowledge of the nodes responsible for storing a given
transaction chain, at all times (Figure 1.10).

– The proof of work mechanism is nevertheless maintained to ensure the authentication
of the transaction origination devices. This allows additional security requirements on
transaction validation like: prohibit any transaction even in case of key theft (Season
4) – allow user to consult his balance on any smartphone while only other one allows to
generate a transaction – enable the organizers of an election to ensure the actual bio-
metric identity of a voter by the associated cryptographic identification of a particular
device.

The Proof of Work consists of finding the right public key associated with the signature
of the device that originated the OriginKey Sig transaction. This involves a search on a
finite set of public keys ensuring that the device is definitely authorized to generate the
transaction and that, at the same time, the nodes able to find that key are authorized
and know the Shared Secrets of the Nodes (Figure 1.19) – otherwise, brute force search
may take a considerable amount of time.

powEN

 @BioShkey8 PubKey1
 PubKey2
 PubKey3
 PubKey4
 …

 PrivKey1
 PrivKey2
 PrivKey3
 PrivKey4
 …

AES

A
E
S

en
cr

yp
te

d

fo
r d

ev
ice

 B
io

 1

…

…

…

 @UsbShkey12 PubKey1
 …

 PrivKey1
 …

AES
…

…
…

 @SoftShkey42 PubKey1
 …

 PrivKey1
 …

AES

…
…

PoW : PubKey of « OriginKey Sig »

…

Validation Stamp

Shared Secrets by family of
clients (biometric devices,
smartphones, secure USB
keys, software keys, etc.)

Coordinator Node

 @addr type timestamp DATA OriginKey Sig

Cross validation node …

Pu
bli

c K
ey

kno
wn

by

the
 ne

twork

Add
res

ses
 of

 th
e

sha

red
 se

cre
ts

by

dev
ice

's f
am

ily

AES
 ke

y e
ncr

ypt
ed

 fo

r c
lien

t d
evi

ce
1

 fo
r c

lien
t d

evi
ce

2

 fo

r c
lien

t d
evi

ce
…

Pri
vat

e k
eys

 en

cry
pte

d b
y t

he

 AES
 ke

y

A
E
S

en
cr

yp
te

d

fo
r d

ev
ice

 B
io

 2

A
E
S

en
cr

yp
te

d

fo
r d

ev
ice

 B
io

 …

A
E
S

us
b

1
A

E
S

So
ft

1

A
E
S

us
b

2

A
E
S

us
b

…

…A
E
S

So
ft

2

A
E
S

So
ft

…

Cross validation node 2

Cross validation node 1

 Prev-PubKey PrevKey Sig

Ok Sig

Ok Sig

Ok Sig

Figure 1.8: Proof of Work

This mechanism makes it possible to support an unlimited number of devices while

15

guaranteeing the confidentiality of the user with respect to the device used, the private
key used by a device being the last key shared between the devices of the same
family (software keys, smartphone keys, smart card keys, etc.). Just like the nodes of
the network, each device will have its own transaction chain allowing it to update its keys.

Since the mechanism for renewing the shared keys of the devices is same as the renewal
of the shared keys of the nodes (Figure 1.19) the network can also ban a particular device
like it can ban a node (the shared key of the devices will no longer be encrypted for the
device banned).

16

1.2.5 Protection against Double, and also Multiple Spending
The potential problem of double spending is unique to digital currencies based on
decentralized networks. Beyond the financial issues, it poses the problem of operational
synchronization of autonomous nodes in lack of any central server scheduling the
operations. Each node must therefore be able to locally and autonomously ensure the
coherence of the network.

To solve the problem of network desynchronization (non-fraudulent cases), the Uniris
network uses:
– The mechanism of transactions chains (Principle 3) which allows to serialize the genera-

tion of a new transaction on a chain - the generation of a transaction is therefore always
synchronous with its chain. Especially for chains using the key derivation mechanism,
for which a fork could not technically be stored and must be resolved before storage.

– The Heuristic Storage Algorithms that allow you to know locally, at any time, the order
of replication and the order of freshness of each transaction from its address (Figure
1.10). This mechanism, which is used for both transaction chains and for the storage of
algorithms and software (Figure 1.5) ensures that each node has the necessary means
to use synchronous data autonomously.

– Finally, the validation mechanism (Figure 1.7) uses cross-notifications from the storage
pools to schedule and notify the validation pool in case of double spending. Since the
validation pool retrieves the chain and the unspent outputs from the associated storage
pool before validation and notifies the associated storage pool after validation.

To solve the problem of double fraudulent double spending (attempted fraud organized
by the validation pool), the Uniris network is based on:
– The property of hypergeometric distribution (Figure 1.18) to guarantee that even with

90% of malicious nodes, the risk that an honest node cannot detect a fraudulent trans-
action is only 10−9 or one chance in one billion (Definition 1).

– If a fraud case is detected by any replication node (Principle 9), then a public and
decentralized investigation process will be initiated to rule on the fraudulent nature
of the validated transaction. At the end of this investigation, nodes considered as
malicious will be banned from the network (Principle 10).

Beyond the problem of double spending, the transaction chain mechanism also avoids the
problem of multiple simultaneous payments - so if something disrupts the payment process
- a user can send an unlimited number of attempts (using the same previous transaction
address) and can be certain that only one transaction (payment) will be considered.

txn0 | null txn1 | txn0 txn2 | txn1’ txn3 | txn2

txn1’ | txn0

txn1" | txn0

Figure 1.9: Double spending management

17

1.3 | Storage Capacity Increase by tenfold & Geographically
Secure

Regardless of the distributed network technology, challenges are:
– How to find a specific data without interrogating the entire network?
– How to make sure that the data is the most up-to-date?
– How to guarantee that data will not be lost or corrupted?
– How to ensure data consistency within a fragmented network?
– How to avoid an attack if the nodes in charge of data are known?
– How to provide an unlimited network without creating an overload of the global net-

work?

To address these constraints, the layers of self-discovery and data synchronization have
been completely redesigned to ensure the availability of data regardless of any disaster,
to give priority in terms of data freshness and to allow data recovery through the best
network path.

In the following sections, we will define these concepts sequentially:

Number of Replicas per Chain . 19
Storage Nodes Election .20
Geographical coordinates vs. Network coordinates . 23
Self Repair and Reconfiguration of the network . 24
Data Structure and Decentralized Ledgers . 25

18

1.3.1 Number of Replicas per Chain
The distributed storage layer is an essential component to allow the network to always
store more data. In the Uniris network, data is stored in a sharding manner, i.e. none of
the nodes contains all the data and the network will therefore be able to store a linearly
larger amount of data as the number of nodes increases.

With the exception of Network Transaction Chains which are stored on all nodes (Prin-
ciple 4), the rule of the number of replicas per chain is intended to be refined over time
through the prediction module (Figure 1.21). As a first approximation, it should corre-
spond to the following formula:

∀ nr ∈ N,
nr∑

k=1

availability(k) > 2(log10n+5) (1.3)

where:
nr : Number of replicas required;
n : Total number of node in the network;

availability : Average availability of a node on the network.

Unlimited Network Paradigm: The number of replicas per transaction chain (from
the address of the last transaction of the chain) will be based:
1. In first implementation on the formula above (1.3)
2. Then reduce the number of replicas based on the hypergeometric distribution ≈ 200
3. Finally, after three validated transactions, keep only the chain condensates (keeping

only the cryptographic evidence and movements on the ledgers for the oldest parts).
The migration to condensates makes it possible to gain a minimum factor of 10 on the
size of the stored chains.

The result in terms of useful storage capacity and considering that the nodes have 512Gb
of useful storage gives the following results for each of the above three scenarios:

1000 nodes 10,000 100,000 1,000,000 Number of transactions
1 2 Tb 10 Tb 50 Tb 250 Tb 6.109 32.109 161.109 806.109

2 2.56 Tb 25.6 Tb 256 Tb 2.56 Pb 8.109 82.109 825.109 8.1012

3 2.56 Tb 25.6 Tb 256 Tb 2.56 Pb 82.109 8.1011 8.1012 82.1012

Without data fragmentation (sharding) the maximum allowable size (useful capacity) is
limited to the size of the smallest node disk, for example, with 512Gb:
– Bitcoin network can store 830 million transactions (431 million for 266 Gb)
– Ethereum network can store 122 million transactions (489 million ≈ 2 Tb)

For an equivalent number of nodes (100,000), Uniris network can store at least (Step 1)
50Tb or 161.109 transactions and at most (Step 3) 256Tb or 8.1012 txn, which is:
– Between 193.9 and 9638 times the number of transaction in the Bitcoin network.
– Between 1319 and 65,573 times the number of transaction in the Ethereum network.

19

1.3.2 Storage Nodes Election
Unlike the one-time process of election of validation nodes, the election of storage nodes
associated with a transaction chain is performed each time the network is modified (ex.
each time a node disconnected or join the network) and each time a new transaction is
performed on the network. This election computation performed in a few milliseconds,
allows each node to autonomously know whether or not to download and store a
transaction chain or to no longer store it (Figure 1.13).

To perform this election, the Rotating Heuristic Storage Algorithm is based:
– On the transaction’s address (the transactions chains being stored on the address asso-

ciated with the last transaction in the chain – Principle 8),
– On a stable element known only by the authorized nodes: the Storage Nonce included

in the Shared Secrets of the nodes (Figure 1.19),
– On the first public key (genesis) of each node’s chain: Genesis Node Pubkey, the first

public key of the nodes being stable, the storage nodes of a given transaction chain will
remain constant on a constant network,

– And on the calculation of rotating storage keys.

The computation of the Storage Rotating Keys works as follows:

RotatingPubkey = Hash(Genesis Node Pubkey, Storage Nonce, hash(transaction address)) (1.4)

The figure 1.10 below shows schematically how the algorithms work to obtain a filtered
and ordered list of storage nodes (Storage Pool):

storage-electEN

nodeF
nodeX
nodeY
nodeA
nodeB
nodeD
nodeG
nodeE
nodeC
nodeZ
…

A4C
D24
22A
A1D
375
F17
D58
A3B
24C
D8A
…

3C1
DDA
2AD
ADA
3EC
FCD
DDE
AAE
2AC
DDB
…

00a2832a50e08075…
083a5aa899163700…
11430a1932deae2d…
22d18b24f8e1d25d…
238e82ef150fedaf9…
33875c3da46b89c3…
57688b2a6a982d9b…
…
c9b6baf0d6a2fb87c…
e9eb86b743c210c53…
f843b38a575411350…

nodeA
nodeB
nodeC
nodeD
nodeE
nodeF
nodeG
…
nodeX
nodeY
nodeZ

5660ea91d071f867…
95b34ac2a5a6bdaf…
e5a7931558302bc0…
a66990464555f6d8…
ab59e5a7948be25b…
0d57b073720d7775…
aac3207defc4c730…
…
355550ef1c8334a9…
3fa6acd110dd5022…
f80ee8bd10fe5a1c…

0d57b073720d7775…
355550ef1c8334a9…
3fa6acd110dd5022…
5660ea91d071f867…
95b34ac2a5a6bdaf…
a66990464555f6d8…
aac3207defc4c730…
ab59e5a7948be25b…
e5a7931558302bc0…
f80ee8bd10fe5a1c…
…

0
1
1
1
1
0
1
1
1
1
…

3
1
9
8
9
8
9
2
7
7
…

4 ≥ 4 Geo-D ≥ 8

Heuristic Algorithms Constraints

Calculation of the most
optimized replication path

Heuristic Rotating
Validation Nodes

NodeA
NodeE

NodeZ

NodeC

NodeG

NodeD

NodeY NodeB

Geo-2 ≥ 8

Geo-A ≥ 8

Geo-3 ≥ 8

Minimum cumulative
average availability by
geographical area

Minimum of
 4 geographical areas

Replication tree

List of the genesis public keys
of the nodes

Rotating keys
computation Sor

ted
 lis

t o
f th

e

rot
ati

ng
key

s

P2
P a

vai
lab

ilit
y

Av
era

ge
ava

ilab
ilit

y

Sor
ted

 lis
t o

f th
e

rot
ati

ng
key

s

Geog
rap

hic
 ar

ea

Netw
ork

 co
ord

ina
tes

Local consolidated & Beacon view

Figure 1.10: Storage node election process

The objective of the storage rotating key algorithm is to allow nodes to obtain in an
autonomous and common way, an ordered and reproducible list of storage nodes from
any transaction’s address.

20

To ensure maximum data availability and security of data, this list is refined based on the
constraints imposed by the Heuristic Storage Algorithms from the consolidated views of
the nodes consisting of:
– The local network view of the node (Figure 1.17)
– Update of network chains replicated on all nodes (Principle 5)
– Information provided by beacon chains (Figure 1.15)
– Constraints added by the prediction module (Figure 1.21)
The main parameters considered are:
– Geographical location: allowing continuity of service even in the event of natural dis-

asters in one or more geographical areas. To make the geographical position of a node
more reliable, it is contextualized by the network coordinates calculated globally by the
beacon chain mechanism (Figure 1.16), and also when renewing the keys associated
with the nodes.

– The average availability of nodes in a given area: rather than modifying the list of
elected nodes, as in the case of the election of validation nodes, the election of a storage
node will be weighted by its availability. The goal will therefore be, the cumulative
availability (each geographical area requiring a minimum cumulative availability D =
1+9 > 8...).

– The risk identified by the prediction module on one or more groups of nodes to modify
the weightage of node availability.

The reality of a geographical position does not necessarily indicate proximity from the
network point of view (latency, throughput). So the replication tree is calculated globally
from the local and qualified views of the nodes, at the time of the generation of the
validation stamps Coordinator Validation & Cross Validation Stamps thus allowing to
distribute the replication work from the most optimized paths.

t w c

cv4

cv3

cv2

cv1

Txn

Pool

level1

t1

t2

t3

t4

t5

Sync

Pool

level1

s1

s2

s3

s4

s5

Inputs

Outputs

Pools

level1
o1

o2

o3

o4

o5

o06

o08

o10

o12

o14

o07

o09

o11

o13

o15

t08

t06

t08

t10

t12

t09

t07

t09

t11

t13

s10

s06

s08

s10

s12

s10

s07

s09

s11

s13

Replication Depthox : replication pool based on ledger(s) output(s) + txn "t-1"
tx : replication pool based on transaction "t"
sx : replication pool based on the daily subset of "t"
cvx : counter-validation nodes
where x : is the replication order or priority
c: Coordinator node
w: welcome node (p2p)
t: transaction

transaction address replication

Transaction only replication

Full chain replication

Figure 1.11: Functional view of the replication process of a validated transaction

21

As shown in the figure 1.11 above, once the transaction is validated, the validation
nodes will start the replication process from the defined replication tree. To avoid failed
replicas, each node will wait for acknowledgement of the next level of replication before
stopping its replication process. Similarly, if a node within this replication does not
acknowledge, the node at the top level will support this unsuccessful replication to ensure
the continuity of the replication.

Since each node has a limited trust in the others (Banishment risk – Principle 10), repli-
cation will always be based on the complete validated transaction (Pending transaction
+ Validation stamp + Cross validation stamps) thus allowing each node to check the
validity of the transaction before storing it.

Technically only this validated transaction will be forwarded to the different storage nodes.
In accordance with the Principle 6 the storage nodes will perform the following tasks:
– The nodes of the "t*" storage pool of the "t" transaction will be responsible for re-

trieving and storing the other transactions of the chain and for exhaustive verification
of the validity of the transaction and its associated chain. After verification, the nodes
in the "t*" storage pool will store the complete chain in their local databases.

– The nodes of the storage pools associated with unspent outputs and recipients will
store the transaction directly after verifying its unitary validity.

– The nodes of the associated beacon chain (Formula 1.6) will store the previous address
of the chain, the transaction address and the timestamp to integrate them into the
associated beacon chain.

22

1.3.3 Geographical coordinates vs. Network coordinates

The Uniris P2P network is based on two types of coordinates:
– Geographical Coordinates: Partially derived from the public IP address of the node.
– Network Coordinates: Calculated from modified algorithms similar to those published

in Vivaldi: A Decentralized Network Coordinate System [1] and directly integrated in
the beacon chain (Beacons Chains – Figure 1.16).

To ensure the high availability and consistency of the data, the knowledge of the exact
location of a node therefore becomes an essential factor, particularly to avoid data loss in
the event of natural disasters. To achieve this, the network breaks down the coordinates
of the nodes into two distinct parts:
– Network Coordinates of a node: these are computed globally and daily through Beacon
Chains (Figure 1.16) and allows, cycle after cycle, to improve the accuracy of the
network coordinates of the nodes. The position of a node is calculated from its latency
(the minimum time to respond to a transaction being unmodifiable) and its throughput.
This view is used to choose the best replication path (Figures 1.10 and 1.11).

– Contextualized Geographic Coordinates of a node: the contextualization of the geo-
graphical coordinates of a node is realized at the time of update of its chain and by
the nodes in charge of the validation of this update. This contextualisation is carried
out on the basis of the deduced (GeoIP) or announced coordinates and is weighted by
the calculations of the Beacons Chains. The update of these data being linked to the
renewal of the keys of the nodes, they will thus be renewed automatically weekly and
at each change of IP address.

The purpose of these additional checks is not to fault the nodes, because there are no
associated punishments, but to ensure the best distribution in terms of geography and
replication availability (1.3.2) from qualified data to ensure maximum availability of the
data.

As shown in the figure below, these network and geographical coordinates are grouped by
zones (patches) allowing a simplified calculation for nodes (number of zones, replication
trees...). The zones are defined in a multiplet of 12 bits representing a tree (e.g. A5F).

Patch FD5
Patch D10
Patch E15
Patch C15
Patch B12

To improve confidence in the geographical position
of nodes, geolocation is verified by cross-checking
using an adapted version of Vivaldi's algorithms

 Patches are used inside mining and storage heuristics algorithms to
 ensure perfect geographical replication (data availability/security)
 but also to optimize network requests. During the validation/
 replication process, the download will be performed from the nearest
 nodes (from network point of view), thus avoiding transfers that will cross
the planet even though the data is already on a nearby node.

Earth

Figure 1.12: Geographical coordinates vs. Network coordinates

23

1.3.4 Self Repair and Reconfiguration of the network
To preserve an unlimited network capacity, a very small amount of information can be
replicated on all nodes, and only the one that requires low writing (size or frequency).
To ensure automatic repair and reconfiguration of replication trees, nodes use the same
information and formulas as those used in the storage node election (Figure 1.10).
This mechanism allows any node to calculate in a few milliseconds the replication tree
associated with an address and therefore to know if it should synchronize a chain or not
(Principle 6).

This process is executed autonomously by each of the nodes at 3 specific times:
– After a modification on Heuristic Algorithms (election and constraints on storage nodes,

ex. update of the prediction module – Figure 1.21)
– After a change in the network nodes (disconnection or arrival of a new node on the

network – Figure 1.14)
– Daily, after re-synchronization of local data with the latest Beacon Chains (Figure
1.15) by rebuilding the history of transactions chains (new transaction on a chain...)

autorepairEN

Beacon Chains day "D-1"

Beacon Chains day "D"

Pool : "01* " — "09-15-2019"

Pool : "00* " — "09-15-2019"

Pool : "FF* " — "09-15-2019"

…

Pool : "00* " — "09-15-2019.15:30"

…

Node F
Heuristic Algorithms

Of Chain Storage

nodeF
nodeX
nodeY
nodeA
nodeB
nodeD
nodeG
nodeE
nodeC
nodeZ
…

A4C
D24
22A
A1D
375
F17
D58
A3B
24C
D8A
…

3C1
DDA
2AD
ADA
3EC
FCD
DDE
AAE
2AC
DDB
…

00a2832a50e08075…
083a5aa899163700…
11430a1932deae2d…
22d18b24f8e1d25d…
238e82ef150fedaf9…
33875c3da46b89c3…
57688b2a6a982d9b…
…
c9b6baf0d6a2fb87c…
e9eb86b743c210c53…
f843b38a575411350…

nodeA
nodeB
nodeC
nodeD
nodeE
nodeF
nodeG
…
nodeX
nodeY
nodeZ

0d57b073720d7775…
355550ef1c8334a9…
3fa6acd110dd5022…
5660ea91d071f867…
95b34ac2a5a6bdaf…
a66990464555f6d8…
aac3207defc4c730…
ab59e5a7948be25b…
e5a7931558302bc0…
f80ee8bd10fe5a1c…
…

1
1
1
1
1
0
1
1
1
1
…

3
1
9
8
9
8
9
2
7
7
…

Pool : "01* " — "09-15-2019.15:30"

Pool : "FF* " — "09-15-2019.15:30"

List of the first public keys
of nodes (genesis) Sor

ted
 lis

t o
f th

e

rot
ati

ng
key

s

P2
P a

vai
lab

ilit
y

Av
era

ge
ava

ilab
ilit

y

Sor
ted

 lis
t o

f th
e

rot
ati

ng
key

s

Geog
rap

hic
 ar

ea

Netw
ork

 co
ord

ina
tes

Local consolidated & Beacon view

Figure 1.13: Self Repair Mechanism of the Network

In the example in figure 1.13 above, the NodeF has been disconnected for 1 day and starts
the bootstrapping process by downloading the beacon chains of the day "d-1" and the
list of chained transactions of the day from the associated storage pools (Figure 1.15).
Once the context is downloaded, the NodeF will reconstruct its global and historical
view of transaction chains (transactions, nodes, algorithm updates, etc.). Based on this
view and all transactions that have not already been downloaded in the previous days,
the NodeF will execute the Storage Heuristic Algorithms to know its position as a replica
against the requirements of each transaction. Once this list is rebuilt, the NodeF will start
downloading the missing transactions based on the network view using Beacons Chains,
the NodeF will choose the NodeB to download the transaction, the network coordinates
of the NodeB being the closest to its own.

24

1.3.5 Data Structure and Decentralized Ledgers
To provide the best balance between data availability, overall integrity of transaction
chains and ledgers, each data type has a specific replication depth within the network.
Since data that is often updated cannot be synchronized everywhere without generating
network bottlenecks, very limited information is replicated on all nodes, such as Network
Transaction Chains – Principle 4 :

– Transactions chains of the authorized nodes (used for validation and replication node
elections, but also to know their IP addresses)

– Transactions chains of Heuristic Algorithms and software (Figure 1.5)
– Shared Secrets Chains of Nodes and Devices (Figure 1.19)
– Prediction module Chain (Figure 1.21).

The replication depth strategy is defined by Heuristic Algorithms and executed directly
by the decentralized software. This means that the network is autonomous to manage
replication without using other external mechanisms. Using these algorithms, each node
will also be able to autonomously re-synchronize the missing data for which it is in charge
(new or disconnected nodes will change the position of the other nodes in the replication
order – Figure 1.13).

Smart-Contracts &
Decentralized IDentity

KeyChains Local In-Memory DBs

Two decentralized databases constitute the references of the Uniris network:

– The first one: Public Smart-Contracts and Decentralized Identity Ledgers contains all
user transaction chains (smart-contracts, ledgers movements & identities, etc.). This
database is the heart of the solution, because it contains the Heuristic Algorithm chain
(Pinciple 5) and all Network Chains (Authorized node chains, shared keys...) and
consequently the governance rules.

– The second one, the Keychains manages decentralized wallets containing the private
keys of users, groups, organizations and connected objects – IoT. The data is managed
using algorithms similar to the storage of transaction chains. To secure the content
of the wallets, the access is restricted to proof of possession of the private key (using
signature) – the functioning of the KeyChains is described in (Season 4).

Finally, nodes use local databases in memory, these databases are designed to be rebuilt
each time a node is started and optimize the operations to be performed by each node
(network view, node list, expenses/constraint checks, triggers, etc.). The figure below
shows the main local databases in memory:

25

UCO Ledger

NFT Ledger

MarketPlace Ledger

Triggers Ledger

Network Ledger

Pending&KO Ledger

P2P Ledger

Optimized database focused on hosted UCO
spent/unspent and conditions
Optimized database focused on Non-Financial
Transactions (Emitter, spent/unspent & conditions)
Optimized database focused on the stock manage-
ment regarding MarketPlace hosted transactions

Optimized database focused on smart-contract
triggers for each hosted transaction
Optimized database focused on Network require-
ments (Nodes, Sharedkeys, Prediction, etc.)
Database listing all pending & KO transactions (to
wait smart-contract countersignature ...)
Network discovery database (IP, availability, rating,
geolocation, network coordinates,etc.)

In order to ensure the best possible organization of the data, and also to use as less memory
as possible, these ledgers use a "column oriented " NoSQL database engine particularly
adapted to field filtering, used in particular for calculations associated with Heuristic
Algorithms.

26

1.4 | Open, Optimized and Structured Distributed Network

There are two methods of communication within the distributed networks: the Gossip
mode, whose properties are defined by the knowledge of the outgoing neighbors, which
means each node of the network will discover the properties of the other nodes by interro-
gating them one by one, usually randomly, and the Broadcast mode [2] whose properties
are defined by the knowledge of the incoming neighbors, which uses incoming connections.
The Uniris network is a hybrid network that uses Supervised Multicast which is closer to
the properties of Broadcast networks and combines the following properties:

Supervised Multicast occurs in three network processes:

– Transaction Replication Process: Capitalizing on incoming and outgoing connec-
tion information during the replication process (Figure 1.17).

– During the process of updating Network Transaction Chains (Principle 6), for
example, when updating the IP address of a node, the information is propagated
to the entire network through the update of the chain associated with the node.

– By the decentralized process of Beacons Chains – Figure 1.16 which, every 10min
will take a snapshot and every day a synthesis of the state of each node to maintain
a permanently global and qualified vision of the network.

Structured and Authenticated: Each node knows at any time the list of nodes al-
lowed to participate in the network via the transaction chains associated with the
nodes. Each connection is authenticated by the last public key of each node (Prin-
ciple 8).

Remunerated: Each node is remunerated according to its contribution to the network
(Incentive System), both for the validation phases and for the information provision
phases: a node is not remunerated to replicate a transaction, but it will be when it
makes the transaction available to the network.

Predictive and Adaptive: To compensate for the unpredictability of nodes on a net-
work of ordinary nodes, the network has a prediction mechanism (Figure 1.21) that
allows it to learn and provide countermeasures on anomalies detected.

Permissionless: any node can participate in the network as long as it has a Hardware
Security Module - HSM 1 and they do not include any element related to a previous
ban. The right to be a replica is open to all, but the right to validate (mining) is
subject to public requirements (Heuristic Algorithms) based for example on geo-
graphical location or on taking into account the profitability of existing nodes to do
not reduce the interest to participate in the network (Season 3).

The schema below 1.14 represents the replication, bootstrapping and self-discovery
mechanisms of the network:

1Cryptoprocessor used for the generation, secure sequestration of cryptographic keys and the calcula-
tion without disclosure of cryptographic algorithms (1.5.2)

27

First connection or long
period of logout ?

netlayersEN

Network data initialization

Get from a list of initialization IP addresses,
closest node IP addresses + update of the

initialization IP addresses.

Synchronization Layer

Data recovery from desynchronized dates

Update of the Node’s chain

Initialization or generation of a new transaction
for the node’s chain update

Should the node string be initialized, renewed
because it is outdated or because of a new

coordinate (IP, port...)?

Network Synchronization
- Rebuilding of the network transaction chains

(software, heuristic algorithms, shared keys,
new keys of other nodes...

- Downloading of selected transactions by the
most optimized path

- Update of local databases

Transaction Synchronization
- Rebuilding of the transaction chains to

extract the last transactions from each chain
- Storage pool computation (replication trees)

for non-synchronized transactions
- Downloading of selected transactions by the

most optimized path
- Update of local databases

Bootstraping End

Acknowledge the associated Beacon Chain

Yes
No

YesNo

Bootstraping Sequence

Network data initialization

Get from a list of initialization IP addresses,
closest node IP addresses + update of the

initialization IP addresses.

Network Chains

Full replication
(on all the nodes)

Other Chains

Partial replication
depending on the

Heuristic Algorithms
contraints

Beacons  
Chains

Replication Sequence

Self-Discovery Layer

Opportunistic local self-discovery
integrated to the transaction’s

replication process

Synchronization Layer

Data retrieval from the Beacon Chain
for the previous day

Self-Discovery Layer

Supervised & Coordinated Probe

The smart-contract governing the beacon chains coordinates the
discovery of the state of all nodes every 10 minutes (latency/
bandwidth/status). 
This probe is performed for each cycle between 2 sets of rotating
nodes to provide a complete view of the connections between
each node after 24 hours (e. g. for 10,000 nodes: this mechanism
will generate 1 request every 10 seconds per node). The zoning
(network coordinates e. g. NodeF : 3C1) of the nodes is
calculated daily (00:00 UTC) using all the data collected and to
be directly used by each node to calculate replication paths.

Figure 1.14: Bootstrapping, Replication & Self-discovery

In the following sections, we will elaborate these concepts:

Beacon Chains Responsible for Global Synchronization . 29
Network Self-Discovery Layer . 31
Network Bootstrapping Layer . 31

28

1.4.1 Beacon Chains Responsible for Global Synchronization
Computing Beacon Chains addresses Since no node has the physical ability to
know the status of each transaction in an unlimited network, the Uniris network uses
a set of specific transaction chains each containing a subset of the addresses of the last
transactions (00*, 01*... FF*) for a given date. The transaction address is determined
directly from the date and address subset (via a derivation function and a seed) in a
similar way to the following calculation:

PrivateKey(subset+date) = Hash(subset + date, StorageNonce) (1.5)

Address(subset+date) = Hash(PubKey(PrivateKey(subset+date))) (1.6)
Example: Full day for 00 subset on 2019, April 18th

Address(00+2019.04.18) = Hash(PubKey(PrivateKey(00+2019.04.18))) (1.7)
Example: Current day (every 10min) for 00 subset on 2019, April 18th at 2:40

Address(00+2019.04.18 2:40) = Hash(PubKey(PrivateKey(00+2019.04.18 2:40))) (1.8)

This derivation key is therefore known by all nodes as soon as they join the network. This
mechanism thus allows nodes to find at any time the transaction chain or directly the
transaction containing all the transactions of a given date.

Transaction Tracking and Time-Stamping The transmission of the validated
transaction address to the associated storage subset (figures 1.10 et 1.11) is performed
jointly between the validation nodes. To insure confidentiality of the transactions within
a chain, the address of the previous transaction is encrypted with the nodes shared
key. Thus allowing nodes to update their replication table by locally reconstructing the
transaction history (Figure 1.13), without disclosing transactions associated with a chain.

The figure 1.15 represents the mechanism of generating the chains of the subsets every 10
minutes as well as the generation of the last transaction which will be the consolidation
of all the information collected during the day for a given subset. Even if all the chains
are cross-linked by the signing of previous transactions, each day will have its own
transaction chain and therefore different storage pools, thus making it possible to balance
the storage on each node. The list of transactions is stored in the zone DATA/Content .

beaconsEN

Validation
Pool  

@John5
2:39:21

Validation
Pool  

@Bob2
2:35:21

Validation
Pool  

@Tom8
2:30:01

Validation
Pool 

@Bono7
2:47:19

Validation
Pool 

 @Michelle3
2:46:11

Validation
Pool 

 @Alice2
2:45:55

Beacon
Storage Pool
04-18-2019
2:40 01*

Beacon
Storage Pool
04-18-2019
2:50 01*

Beacon
Storage Pool 
04-18-2019
24:00 01*

Beacons
Storage Pool
04-18-2019

01*

Beacon Chain of 04-18-2019
2:40 01*

1555554601: @Tom8
1555554921: @Bob2
…

Beacon Chain of 04-18-2019
2:50 01*

1555555555: @Alice2
1555555571: @Michelle3
…

Beacon Chain of 04-18-2019 01*
1555554601: @Tom8
1555554921: @Bob2
…
1555555555: @Alice2 1555555571:
@Michelle3
…

Figure 1.15: Beacon Chains Transaction Tracing and Time-Stamping

29

Status and Network Coordinates of nodes Beacon chains also contain the network
status for the subset of nodes whose first public key (genesis) belongs to the same subset
(01*). For each new transaction on this chain (ie. "01*" on "2019-04-18" at "00:20") the
associated storage nodes will have the task of

– Checking the status of the nodes belonging to this subset and store the result obtained
by consensus in binary form (the list of nodes being known: e.g. 111010101 for the
status of the first 9 nodes in the ordered list).

– Listing the nodes that participated in this verification (always in binary form from the
sorted list).

– And among other information, latency and throughput between each of the nodes
in the storage pool and each of the nodes in the subset (01*). This information is
used to determine the network coordinates (1.3.3) of each node at the end of the
day in a synthesis transaction that will be downloaded by all the nodes. During this
computation, as shown in the figure 1.16, each of the "end-of-day" storage pools will
retrieve all the beacon chains from each of the subsets to globally calculate the network
positioning of each of the nodes and integrate this list (complete and locally calculated)
into the synthesis transaction.

beaconsnetEN

Beacon
Storage Pool
04-18-2019
2:40 01*

Beacon
Storage Pool
04-18-2019
2:50 01*

Beacon
Storage Pool
04-18-2019
24:00 01*

Beacons
Storage Pool
04-18-2019

01*

Beacon chain of 04-18-2019
2:40 01*

Storage Pool : 11100110
Availability : 1111010110
NodeA: {51.68.80…,21.2,2.3…},{…}
NodeB: {51.75.199…,17.4,3.4…},{…}
…

Beacon chain of 04-18-2019
2:50 01*

Storage Pool : 11010101
Availability : 1101110100
NodeA: {51.68.80…,42.1,1.3...},{...}
NodeB: {51.75.199…,32.7,2.5...},{...}
…

Beacon chain of 04-18-2019
01*

Full day involved nodes : 11010101
00* Nodes Availabilities : 1101110100
NodeA: {ADA, 99%, 3Mbps, 50%...}
NodeB: {3EC, 97%, 5Mbps, 60%...}
…

NodeA
NodeE

NodeA

NodeB

NodeC

NodeD

NodeE

Beacons
Storage Pool
04-18-2019

00*

Beacon Chain of 04-18-2019
00*

Beacon
Storage Pool
04-18-2018
24:00 00*

Node with the first public key
(genesis) starts by 01

NodeB

NodeC

NodeD

Figure 1.16: Beacon Chains Status and Network Coordinates of Nodes

Unlimited Network Paradigm: The segmentation of the subsets will be adjusted by
the Heuristic Algorithms according to the number of transactions per second supported
by the system. For example, a subset created from the first byte ("00*") will generate a
request every 2.56 seconds on each of the pool nodes for a global load of 100 req/sec on the
network, similarly a subset created from the first three bytes ("000000*") will generate a
request every 5.59 seconds on each of the pool nodes for a global load of 3,000,000 req/sec.

30

1.4.2 Network Self-Discovery Layer
As described in the figures 1.14 and 1.17, the "semi-passive" or "opportunistic" self-
discovery operation will allow each node to build a local view on the state of the
nearby nodes without generating any new transactions. Network data (IPs, protocols,
latency, throughput, etc.) can be calculated directly and other data (disk usage, aver-
age CPU/memory usage) will be explicitly transmitted by the transaction’s transmitting
nodes. This local view (see figure 1.17) will then be compared with the views of the other
nodes when updating the beacon chains (Figure 1.16).

NodeF

NodeB

NodeC

NodeD

NodeA

NodeGNodeE

View of the local Node

NodeA

NodeE
NodeD

NodeB

NodeF
NodeG
...

RTT Mbps Protocol IPs
21.28

32.56
29.32

17.43

23.78
22.47
...

2.32

1.23
5.21

3.42

1.92
7.23
...

WebRTC

WebRTC
TCP

SCTP

SCTP
SCTP
...

51.58...,51.75

217.70...
213.186...

193.252...

216.58...
205.51...
...

Replication Process

Figure 1.17: Discovery during the Replication Phase

1.4.3 Network Bootstrapping Layer
When a node or client first connects to the network, the node or client will need to
contact one of the pre-filled "Seed" (list of stable IP addresses of nodes with higher
availability) which will return the updated list of "Seeds" and the list of the nearest
available nodes (via Geographical coordinates vs. Network coordinates).
In the case of the first connection of a node, it will generate a transaction to initialize its
chain toward one of the nearest nodes so that it can then be validated and completed
with the necessary information to participate in the network (Node Shared Secrets, etc.).
A node that has already been initialized, but whose chain has expired or one of the
network information has been modified (IP, port, protocol, etc.) must also start the
sequence by updating its chain.

Once the node chain is initialized or updated, the node will be able to request the list
of network nodes from any other node. This list contains for each node of the network:
its identifier, its first (genesis) and last public key, IP address, port, protocol, best rate,
best latency, geographical area, network coordinates and its system data (disk usage
and average CPU/RAM availability). This view is built by each of the nodes from the
qualified data of the previous day’s beacon chains and is kept up to date through the
process of network chains replication (all of which is replicated throughout the network).

Once the minimum information has been restored, the node can then re-synchronize all
the data as follows:

1. Calculation of beacon chain addresses (Formula 1.6) from the dates when the infor-
mation was not synchronized and retrieval of the respective associated transactions.

2. Rebuild the history of the network transactions chains (node chains, heuristic algo-
rithms, etc.), retrieve associated chains and update local databases.

3. Reshape the history of other transaction chains, calculating replication trees, identi-
fying transactions to download (Figure 1.13) and retrieving transactions by the most
optimized paths (via network coordinates 1.3.3).

31

4. Finally, when all the data has been updated, the node will notify the beacon chain
associated with its "genesis" public key so that it can once again participate in the
network.

Note: In order to facilitate the re-synchronization operation by the nodes, the validation
pool in charge of updating the node key will specify the date from which the node will
be able to participate in the network. To define the required duration for a node to re-
synchronize its data, the prediction module is learning depending on the desynchronization
status, hardware and network capacities of the node and from the previous beacon chains
notification to precise the estimation.

32

1.5 | Security Beyond Known Solutions

The Uniris network has been designed to provide a significant improvement in IT
security for users (biometric identification without any key storage (Season 5)), and
also to significantly improve security on decentralized networks without affecting the
fundamentals.

The following sections will define:

1.5.1 Network Resilience & Malicious Operations Detection
1.5.2 Adaptive and Quantum-Safe Security
1.5.3 Separation of Powers to Strengthen Security

Despite the obvious advantages of distributed networks over centralized systems that are
based entirely on the trust of third parties, it is still important to list the known weaknesses
of these networks:

51% Proof-of-Work flaw: For proofs of work based on computing power (HashRate),
the flaw that can be exploited by an attacker, is to gather during a given period a
computing power equivalent to the power of the entire network. The security of the
network is at mercy of the computing power of its nodes.

Proof-of-Stake flaws: The main risks for Proof-of-Stake, beyond the somewhat recen-
tralized nature of consensus, are taking control by financial means and for an at-
tacker to be able to concentrate his attack on a few nodes of the network to take
control.

Faults of the dBFT The networks using Delegated Byzantine Fault Tolerance consen-
sus are not fully decentralized. Moreover dBFT provides fault tolerance of, f=(n-
1)/3 dishonest nodes where n is the total number of nodes. The idea of consensus
being ruled by 2/3rd majority.

Split-Brain flaws: The split-brain can occur in a non-fraudulent way, for example after
a submarine cable is cut, making one half of the network inaccessible to the other
half. In this case, two versions of chains could exist during the break.

DDoS vulnerabilities: The DDoS vulnerability on a decentralized network, consists of
overloading all or part of the nodes with transactions, thus incapacitating a part of
the network to participate in consensus building.

Sybil attack flaws: The Sybil attack (personality duplication) aims to overload the net-
work with false information from multiple identities or from of a multiplied identity,
this attack is even more effective on unstructured networks using p2p information
from neighboring nodes to create their views.

Smart-Contract (VM) faults: The most well known is "TheDAO" fault that appeared
in May 2016 and which resulted in the creation of two separate block chains on the
Ethereum network. This vulnerability highlighted the problem of code being exe-
cuted blindly by virtual machines on nodes. As such, other Blockchains, for example,
propose a method of mandatory programming of smart-contracts to improve deter-
minism on the output result, but consensus is generally based on Proof-of-Stake or
dBFT.

33

Wallet Flaws: Wallets (wallets managers) can be summarized into three main families:

Outsourced Wallets: Generally provided by trading platforms, they pose the prob-
lem of key centralization and are therefore prime targets for an attacker (Zaif,
Coincheck), zero-day attacks being much easier than taking control of tens of
thousands of minors.

Wallet Apps: Provide real comfort for the users who can use their cryptographic
keys anywhere, but these apps expose problems of security of the system layer,
the security of other installed applications, and also the way they are encoded (e.g.
Bitcoin-Qt which raised the problem of the predictability of generated keys).

Hardware Wallets: Physical wallets provide the best way to secure cryptographic
keys, but they also pose the widespread problem of media loss.

The vulnerabilities listed cover four areas, on which the Uniris network provides the
following countermeasures:
Consensus Layer where the best consensus offers resistance to attacks of the order

of 66% of malicious or dishonest nodes, thanks to the ARCH consensus Uniris
network can reach a risk of 10−9 (1/1,000,000,000) below aeronautical or nuclear
standards even with a network composed of more than 90% of malicious nodes
(Figure 1.18). The ARCH Consensus is based on Atomic Validation or the formal
consensus obtained by Rotating Heuristic Election of validation nodes – meaning
total agreement on the validation of a transaction by the nodes selected by a random
and rotating election.

Network Layer where the majority of Blockchain solutions are based on Gossip, the
Uniris network is based on Supervised Multicast (Figure 1.14) allowing to avoid
unnecessary network traffic while providing a complete and shared view of the state
of the nodes. This capacity allows the network to detect any Split-Brain type
problem and provide the appropriate countermeasures. All transmissions being
authenticated at the client level (shared keys of sending devices and software) or at
the node level (node chains and Shared Secrets) any DDoS attack could quickly be
identified and ruled out.

Smart-Contracts Layer the Bitcoin network relies on unspent transaction outputs
(UTXOs) allowing everyone to check the consistency between the different inputs
on the ledger and the outputs. Since each transaction is signed cryptographically, it
is impossible to create a fake transaction on a Wallet whose private key is unknown.
The Uniris network is based on the same property: only validated transactions are
authoritative, it is not possible, for example, to make a database inside a smart-
contract. On the other hand, all current smart-contract use-cases would still work
as well on the Uniris network as on other networks (for example, in an e-commerce
smartcontract, the smart-contract issued by a merchant will be able to define stocks,
prices and interactions with its customers using a view which is continuously updated
by the nodes responsible for storing the smart-contract and based on transactions val-
idated to that same smart-contract – (Season 2)). The "UTXO" operation does not
give a status within a smart-contract but allows it to be calculated (in the example
above the merchant cannot directly query a smart-contract on the status of orders,
but can verify the proven status of orders through validated transactions).

Wallet Layer although discussed lastly, the primary goal of the Uniris network was to
develop a biometric identification method allowing users to retrieve their crypto-
graphic keys using the body and without ever having to store these biometric or
derived data, outside the body (Season 5). When combined with the Uniris net-
work, the mechanism of device level authorization is such that an attacker will not

34

be able to generate a transaction even if the user private keys were somehow compro-
mised. The objective is to remove the adoption barriers associated with managing
cryptographic keys and securing them for any human being.

1.5.1 Network Resilience & Malicious Operations Detection
The properties of the ARCH requiring 100% positive and matching responses, the network
allowing the authentication of each of the nodes and the supervised multicasting ensuring
reliable knowledge of the availability of the nodes - makes it possible for the consensus
to satisfy the hypergeometric distribution law (1.9). The hypergeometric distribution
describes the probability of k success (detection of fraudulent operation) for n drawn
(verifications) without repetition with a total finite number of nodes N and by considering
a number N1 of malicious nodes (90%):

P[X = k] =

p∑
k=1

(
N1

k

)
×
(
N−N1

n−k

)(
N
n

) (1.9)

This law thus makes it possible to estimate the chance of detecting a malicious operation
by knowing the number of validations (verification). The example below calculates that
for a total of 100 nodes, including 90 malicious ones, 42 checks give a 99,7% chance of
detecting a fraudulent transaction (having at least one honest node 1 6 k 6 10).

P[1 6 X 6 10] =
10∑

k=1

(
10
k

)
×
(

90
42−k

)(
100
42

) ≈ 99.7% (1.10)

In the same manner and on the same drawing, 84 verifications will allow to obtain
99,9999999% of chance to detect a fraudulent operation or the risk of not detecting is
10−9 (these are beyond the standards of the acceptable risk for aviation or nuclear) :

P[1 6 X 6 10] =
10∑

k=1

(
10
k

)
×
(

90
84−k

)(
100
84

) ≈ 99, 9999999% (1.11)

The hypergeometric distribution becomes really interesting when the total number of
nodes in the network increases (considering 90% of dishonest nodes in above equa-
tions). The figure 1.18 below shows the number of checks required (number of cy-
cles) as a function of the number of nodes to obtain a risk in the order of 10−9.
Thus, for 100 nodes, it will require 84 validations (84%), for 1000 nodes: 178 (or
17.8%), for 10,000 nodes: 195 (or 1.9%) and for 100,000 nodes: 197 (or 0.2%)

35

50 75 100 125 150 175 200

Number of cycle(s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

P
ro

b
ab

il
it

y
to

n
ot

d
et

ec
t

m
al

ic
io

u
s

va
li
d

at
io

n
(%

)

Hypergeometric distribution with 90% of malicious nodes

100 nodes

10−9 probability (84 cycles)

1000 nodes

10−9 probability (178 cycles)

10000 nodes

10−9 probability (195 cycles)

100000 nodes

10−9 probability (197 cycles)

Figure 1.18: Hypergeometric distribution for 100, 1000, 10000 and 100000 nodes

1−
[

lim
N→+∞

P[X = k]

]
= 1−

[
lim

N→+∞

p∑
k=1

(
0.1∗N

k

)
×
(
0.9∗N
n−k

)(
N
n

)]
≈ 10−9 ⇒ n ≈ 200 (1.12)

This means that even with 90% of malicious nodes, no matter how many nodes are running
on the network, a control with a tiny part of the network (less than 200 nodes) ensures
the atomicity property of network transactions.

1.5.2 Adaptive and Quantum-Safe Security
To allow cryptographic backward compatibility, to evolve the network as the cryptographic
research progresses and to provide the choice of cryptographic algorithms to people, orga-
nizations or countries, the public key will be versioned on a byte indicating the algorithm
used. The supported algorithms are listed in a chain of specific smart-contracts.
Combined with the non-disclosure mechanism of public keys (Remark 2) and combined
with the need to simultaneously known multiple temporary private keys (1.2) to be al-
lowed to generate a transaction, the task of a quantum computer potentially capable of
"breaking" private keys should be considerably more complex.
Except for hardware compatibility issues (HSM, etc.), EdDSA Signatures, Curve25519
and AES256 will be used by default on the network.

36

1.5.3 Separation of Powers to Strengthen Security
The Uniris network is based on the concept of SoD (Segregation of Duties). To achieve a
formal separation of powers between miners themselves and between users and miners, the
Uniris network uses the technical requirement of knowing a group of cryptographic keys
(one group knows the private key while another only knows the public key and vice versa).

Knowledge of shared secrets makes it possible for nodes to participate in the validation
process of a transaction (mining) and therefore be paid for this work. Technically, the
shared secret is a derived or stretched key, generated from a key derivation function [3]
[4] allowing nodes to retrieve the shared key from a secret (Seed), a derivation function
and, in the case of shared node secrets, the date. The secret (Seed) and the derivation
function are encrypted with the last known public key of each node and renewed each
time a node is banned from the network (see figure below).
The renewal of the shared key of the nodes is performed daily at 00:00 UTC and is
communicated to the rest of the network in the minutes before.

By using the mechanism of self-triggered smart-contracts (Season 2), the daily generation
of a new transaction on the Shared Secrets chain (Figure 1.19: @NodeShardKey-3) is
entrusted to the first available storage node associated with this address (1.3.2) and is
unpredictably validated by the elected validation nodes (1.2.2). To preserve the integrity
of this chain even in the event of a private key disclosure, this one uses the inherited
recursive constraints mechanism (Season 2) prohibiting any modification of the chain
regardless of the private key’s knowledge.

The figure 1.19 below represents the renewal of Shared Secrets after banning one or more
nodes from the network:

sharedkeyEN

 @
No

de
Sh

ar
ed

K
ey

-4

…

DATA/ Keys:
(AES) Encrypted content:
New Transaction Seed &
derivation function
New NodeSharedKey Seed,
derivation function & Daily
Nonce derivation method
New Wheel of Privacy Seed &
derivation function
New Sync Blocks Seed &
derivation function

 Enc@nodeA PubKey(AES)

 Enc@nodeB PubKey(AES)

 Enc@node… PubKey(AES)

 N
od

eS
ha

re
dK

ey
-3

 P
ub

ke
y

 N
od

eS
ha

re
dK

ey
-3

 S
ig

@NodeSharedKey-3 DATA / Content:
NodeSharedKey Pubkey,
Wheel of Privacy PubKeys

… @NodeSharedKey-5 DATA / Content:
NodeSharedKey Pubkey,
Wheel of Privacy PubKeys

… @NodeSharedKey-6 DATA / Content:
NodeSharedKey Pubkey,
Wheel of Privacy PubKeys

…

Date : 04-18-2019 00:00 Date : 4-19-2019 00:00 Date : 2019-04-18 07:38

Date : 04-18-2019 07:38 The shared public key of the
nodes and the public keys of the
"wheel of privacy" are
communicated to the rest of the
network

Generation of new
"Seeds" and new

derivation functions after
at least one node has

been banned

Shared Secrets are encrypted with
a cryptographic key "AES". This
key is also encrypted with the last
public key of each authorized node
(without the banned nodes)

Figure 1.19: Shared or Crossed Secrets of Nodes

37

1.6 | A Network Capable of Reconfiguring Itself to Prevent
Disasters

To enable a decentralized network to survive for decades or centuries, it must be able
to adapt to threats and react accordingly. For this, the Uniris network is based on two
adaptive algorithms:
Action and reaction capacity: This capacity is ensured by Heuristic Algorithms

which manage the majority of network behavior: for example by adapting the
constraints on the number of validations/replications according to the number of
connected nodes of the network or in weighting a geographical area according to the
average availability of the nodes. All behaviors are pre-established directly in the
algorithms.

Prediction, anticipation and correction capacity This module has the ability to
link patterns/samples and futures behaviour, hence potentially predict a future state
of the network. For example, to detect that an operator in a given country updates
the firmware of his boxes monthly and that the network will be cut for all associated
nodes during this period, that the electricity network for a given region of the world
is cut during storms or even before an attempt to attack the nodes in charge of the
validation will tend to respond less quickly to other transactions. The objective is
to guarantee at all times the availability of data, for example by changing the avail-
ability weight of one of the nodes elected for replication or by increasing the number
of validations required for a given transaction without reducing the constraints of
Heuristic Algorithms.

The following sections will define:

1.6.1 Uniris Oracles Chains
1.6.2 Prediction Module’s Parameters
1.6.3 Functioning of the Prediction Module

1.6.1 Uniris Oracles Chains
To reconstitute the context of events before the anomaly occurs, the network must have
as much qualitative information as possible. For this purpose, the prediction module uses
two decentralized mechanisms:

Beacons Chains: This lists all network states and transactions every 10 min and sum-
marises it every day, its operation is described in the section Beacon Chains Respon-
sible for Global Synchronization.

Oracle: The "World State" Oracle behaves in the same way as the Beacons Chains except
that new transactions on the chain are not generated every 10 min, but every time
information is updated (for example when a new weather report is published) - all
information will also be aggregated at the end of the day (00:00 UTC) by a last
transaction on the chain. The information listed within this chain is of several
kinds: climatic, financial (stock market prices, crypto-currencies prices – including
the Uniris Coin), societal (number of occurrences of keywords on information sites
or even when possible the last words most used on search engines). All references
(URLs, etc.) are listed in a specific smart-contracts chain.

38

…

woracle

…
1555575067: Yahoo : meteorological
forecasting at 20:00 AB1, CD2 violent
winds > 120km/h
…

Oracle at "2019-04-18 08:11"

1555575067: Yahoo : meteorological
forecasting at 21:00 AA3, BB2 violent
winds > 110km/h
…

Oracle at "2019-04-18 10:17"
…

1555575067: Yahoo : meteorological forecasting at 20:00 AB1, CD2 violent winds > 120km/h
…

1555575067: Yahoo : meteorological forecasting at 21:00 AA3, BB2 violent winds > 110km/h
…

Hash of last Oracle of the day & Hash of Oracle of "2019-04-17"

Oracle of "2019-04-18"

Figure 1.20: Oracle’s chain representation

The purpose of using these data is to reconstitute the context before the event period in
such a way as to detect early signs.

1.6.2 Prediction Module’s Parameters
The parameters of the prediction module are stored directly on the smart-contracts
chain Uniris Prediction Module. This autonomous smart-contract will be able to perma-
nently modify its chain, without having the capability to modify the constraints imposed
(Anomalies Triggers, Scope of countermeasures proposals & KPI) which will be protected
by inherited recursive constraints (22) imposing a community vote (Season 2) (Season 3).
The prediction module has 5 main parameters :

Anomalies Triggers: Unlike Beacon Chains and Oracle Chains, anomalies do not pro-
vide a learning context, only the events and thresholds to be monitored that trigger
the pattern detection phase (scheme that seems to have led to the anomaly). This
anomaly detection is performed locally by each node, especially during the network
self-repair cycles (1.3.4). For instance, when a transaction will have a critically low
level of replication after the unavailability of a large number of nodes on one or more
geographical areas.

Scope of Countermeasures Proposals: The countermeasures perimeter allows nodes
to know on which parameters countermeasures will be applied (e.g. request an
additional geographical replication area for transactions whose storage nodes are
located on a storm’s trajectory).

KPI: The key performance indicator makes it possible to weight each of the countermea-
sure proposals, in particular to ensure a minimum cost for the network, for example:
the additional calculation time, the number of replicas, the number of additional
validations induced, the anticipation in allowed time and of course the success rate
of the proposed countermeasure.

Request for Countermeasures: They represent network requests related to qualified
anomalies (having received a minimum number of nodes confirming the anomaly),
anomalies without relevant countermeasure proposals (KPI efficiency factors) will
remain listed in this section.

Network Countermeasures Triggers: These triggers are used continuously by
Heuristic Algorithms especially for validation and storage node elections, but es-
pecially during the self-repair phase (1.3.4) thus allowing the network to apply
countermeasures before an event even occurs.

1.6.3 Functioning of the Prediction Module
The prediction module is hosted on the smart-contracts chain Uniris Prediction Module
replicated on all network nodes. Technically, the content of the triggers (anomaly and

39

countermeasure triggers) is added to the local trigger database Triggers Ledger (1.3.5)
and will be checked for each operation. The diagram below shows in a simplified way
the mechanism for modifying the prediction model following the detection of a qualified
anomaly.

Smart-Contract :
conditions: // Conditions to update the smart-contract by a new smart-contract
 minimum number of similar Anomaly Sensor Alert > 2
 @new : from @StoragePool
Input constraints: // Alerts sent to the smart-contract constraints
 From: @sig_authorized_node
 Content : @anomaly-ref, @related-references, @period
inherit content constraints:
 @same_content // exact same content except address …
inherit content exceptions:
 @dao_tech_update

Ai

Uniris Prediction Module - 3

NodeB NodeC NodeF

DATA/Smart-Contract:
…
DATA/Content :
Prediction module Parameters :
• Anomalies triggers :

- If within a subgeographical area, the number of nodes decreases by
up to 50% in less than one hour.

• Scope of countermeasures proposals:
- Add more replicas, add more geographical areas, add more validation

• KPI:
- lower cpu-time gap (ms), better efficiency of countermeasures (%) …

Uniris Prediction Module - 4

NodeS

NodeT

NodeO

NodeA

NodeV

NodeL

NodeG

NodeR

NodeE

DATA/Smart-Contract:
…
DATA/Content :
Prediction module Parameters : …
Request for countermeasures :
• Previous request not reached @ref-aa2
• @ref-aa3: 2019-04-18 21:01: 80% of node in area

AA and BB were unavailable
Network Countermeasures :
• @ref-aa1 : …

Validation Pool of
"Uniris Prediction

Module - 4"

Pool of node elected to perform the
investigation (pattern detections,
countermeasure proposals, KPI) NodeC

NodeP

NodeM

Uniris Prediction Module - 5

DATA/Smart-Contract:
…
DATA/Content :
Prediction module Parameters : …
Request for countermeasures : …
Network Countermeasures triggers :
• @red-aa1 …
• @ref-aa3 : (until meteorological forecasting of

wind > 110 km/h) and (AA or BB included
inside Storage Pool) then (minimum number of
geographical areas += 1)

 Storage Pool of "Uniris Prediction
Module - 4 " and Validation Pool of "Uniris
Prediction Module - 5" are in charge to test/
validate the proposals individually, but also
against to other countermeasures

 Reports on the
 pattern detection,
countermeasure 
proposals and KPI

1

2

3a

6

Oracle Chains

Beacon Chains
4

3b

7

5

Storage Pool of
"Uniris Prediction
Module - 3 »

Storage Pool of
"Uniris Prediction
Module - 4"

2

3

Figure 1.21: Prediction Module

1 The anomaly is detected by several nodes that
will transmit a new transaction to the smart-
contracts chain Uniris Prediction Module
2 Once the quorum of the number of node con-
firmations has been reached, the storage pool in
charge of storing the smart-contract Uniris Pre-
diction Module - 3 will generate an update of the
smart-contract through a new transaction on the
chain by adding a new Request for countermea-
sures.
3 At the time of transaction validation:
3a The validation pool will elect the nodes
that will be in charge of the investigation (nodes
P, C and M) and integrate the elected nodes into
the replication process.
3b Before starting the replication process for
this new transaction.

4 The elected nodes will then retrieve the data
from the Oracle and Beacon chains that preceded
the event to start searching for patterns that
could have predicted the anomaly. Once the var-
ious events have been evaluated, each node will
then test the modification of each of the autho-
rized parameters Scope of countermeasures pro-

posals to extract the most effective ones before
measuring their impact from the locally hosted
transactions (sandbox).
5 The evaluation completed, each of the nodes
elected for the investigation will forward to the
smart-contract storage pool Uniris Prediction
Module - 4 the most relevant proposals (Patterns
/ Countermeasures and KPI).
6 Once the quorum of responses received has
been reached, the smart-contract storage pool
Uniris Prediction Module - 4 will locally test the
different proposals and if a consensus is reached,
generate an update of the smart-contract through
a new transaction containing the validated coun-
termeasure. This countermeasure will be tested
again by the validation pool of this new transac-
tion before being replicated throughout the net-
work.
7 Once the chain is updated, each of the net-
work nodes will integrate this new trigger into
the local trigger database Triggers Ledger (1.3.5)
to be checked during each validation, replication
or self-repair process.

40

1.7 | Energy Consumption: 1 Billion times less, 0.1g of sugar

Despite the strength of decentralized networks, based on proof of work, to migrate from
trust imposed by a third party to proven and distributed trust. The energy consumption
of the HashRate based Proof of Work (up to 400 kWh for the validation of a single
transaction) is clearly a barrier to its widespread adoption. Even in the medium term,
this massive energy consumption prevents large-scale use of this technological revolution,
both for its profitability (the minimum cost of electricity consumed for a miner be-
ing 2$ per transaction) and for the number of power plants that would have to be deployed.

Other solutions have emerged such as Proof-of-Stake, but those pose an obvious problem
of centralization and governance or DAG (Directed Acyclic Graph), which poses the
problem of data availability.
Uniris network stands out due to its relentless focus on data availability and on the inclu-
sive, global and decentralized spirit of proof of work (while not being based on HashRate).

The calculation below, although theoretical, is based on the first results obtained and the
assumptions considered are as follows:

– Daily Consumption of a Uniris node working at 100% : 15Wh (e.g. Intel NUC i3)
– In a most conservative hypothesis for sake of calculation, consider ten nodes are ded-

icated for 10 seconds to validate and replicate a transaction (the current figures for
validation of a transaction are less than 1 second for a single node and around 100 ms
for the replication).

– The number of transactions on the Bitcoin network is 93 million transactions per year
with an energy consumption of around 38.7 TWh/an.

Based on our assumption of 10 seconds per transaction validation, the number of
transactions validated by these 10 nodes per year is: 365.4 × 24 × 60 × 6 = 3 157 046
transactions, and therefore the number of nodes required to handle the current yearly
Bitcoin transactions would be: 93 000 000 ÷ 3 157 046 = 29.45 with sets of 10 nodes so
29.45 × 10 = 295 nodes, that is all the number of nodes required by Uniris network to
cover the current mining power of the Bitcoin network.

Taking it further - In terms of energy consumption of Uniris network, we obtain 295 ×
(365.4× 24)× 15 = 38 805 kWh/an (10−9× 38.7TWh/an or 1 billion times less). A mere
0.42Wh required per transaction or the energy equivalent in joules to one tenth of a gram
of sugar.

41

Bibliography

[1] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A Decentralized
Network Coordinate System. SIGCOMM’04, 2004.

[2] Bernadette Charron-Bost and André Schiper. The heard-of model: Computing in
distributed systems with benign failures. 01 2007.

[3] Pieter Wuille. Hierarchical deterministic wallets. 2012.

[4] Marek Palatinus, Pavol Rusnak, Aaron Voisine, and Sean Bowe. Mnemonic code for
generating deterministic keys. 2013.

42

	A Truly Decentralized & Limitless Network
	The Unexplored Eldorado of Transactions Chains
	ARCH : An Uncompromising Consensus allowing to reach the million txn/sec
	Heuristic Algorithms
	Global, Unpredictable and Reproducible Election
	Transaction validation process
	Proof of Work
	Protection against Double, and also Multiple Spending

	Storage Capacity Increase by tenfold & Geographically Secure
	Number of Replicas per Chain
	Storage Nodes Election
	Geographical coordinates vs. Network coordinates
	Self Repair and Reconfiguration of the network
	Data Structure and Decentralized Ledgers

	Open, Optimized and Structured Distributed Network
	Beacon Chains Responsible for Global Synchronization
	Network Self-Discovery Layer
	Network Bootstrapping Layer

	Security Beyond Known Solutions
	Network Resilience & Malicious Operations Detection
	Adaptive and Quantum-Safe Security
	Separation of Powers to Strengthen Security

	A Network Capable of Reconfiguring Itself to Prevent Disasters
	Uniris Oracles Chains
	Prediction Module's Parameters
	Functioning of the Prediction Module

	Energy Consumption: 1 Billion times less, 0.1g of sugar

