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THE SUM OF THE RECIPROCALS OF THE

SQUARES
A Proof by Leonhard Euler

As if one needed further evidence for the genius of Leonhard Euler, here is one
of his solutions to the summation of a famous series. The sum of the
reciprocals of the squares of the natural numbers was a question first posed in
1644 by Pietro Mengoli, and left unsolved until Leonhard Euler 1734 [1]. The
original method that Euler used was not what follows, but an expansion of the
series of the sine and cosine functions. What makes this particular method
appealing is a reliance on multivariate calculus techniques [2]. Tt was
well-known at the time that the series Y - | n—lp diverges for p < 1 to some
finite value; finding that specific value, however, is a far greater challenge.

The object of this paper is to find, and prove, the exact value that this series
converges to.
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Euler accomplished this by showing first that this series is equal to the
following integrated region, and then finding the exact value of the definite

integral.
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This double integral over the region D = {z,y|0 <2z < 1,0 <y < 1}, which is

represented graphically below, at first appears to have nothing in common
with this series; however, the integrand can be rewritten. In particular, ﬁ

is of the form ﬁ for |p| < 1 can be expanded as an infinite series.
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So we know that this integral is equal to the sum of the reciprocals of the
squares. Euler performed a transformation of variables here to find the exact
value of the double integral.

Let z = “\g, and let y = “\75”

Because the determinant of the Jacobian matrix is 1, or equivalently because
rotation is a linear transformation, dydxr = dudv.

Intuitively this makes sense as the area of the transformed region is 11 =1,
as the region D is rotated counterclockwise by 90 degrees, now changing the

limits of integration accordingly to the bounds on the U-V axis.

Here is an image of the unit square representing the region D.
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Now here is the rotated region of integration.
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Here we substitute in (u,v) for (z,y) and evaluate.
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1 Evaluating the inside integral of A:
Let o = v2 — u?,
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This can be evaluated with the substitution u = /2 sin 0, du = /2 cos 0db
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where u = v/2sin6 = 6 = arcsin 75

This means that the total of A is just
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2 Evaluating the Integral B:
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From our earlier result, it was shown that the inside integral stays the same,
and only the limits of integration change.
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Just as last time let u = v/2sinf, du = v/2 cos 0 and the integral simplifies to
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For simplicity,

A = 1—sinf

cos 6
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By substituting these back in, it can be seen that the integral miraculously
simplifies.
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Adding B to A and equating it to the original geometric series, we find that
the summation of the infinite series of the reciprocals of the squares of all
positive integers,
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