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Abstract

This paper will be looking at the development of random Fibonacci
sequences throughout history and investigating the various mathemat-
ical methods used by many mathematicians to determine important
qualities about the sequence, which all lead to the growth rate.
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1 Introduction

The Fibonacci sequence was first introduced by Leonardo of Pisa in 1202,
since then they have been studied a lot by many different mathematicians.
The Fibonacci numbers have been used in various different fields such as
biology to describe naturally occurring patterns and also by computer scien-
tists when looking at efficient searching algorithms. To understand random
Fibonacci sequences we must first look at the standard Fibonacci sequence.
In mathematics, A Fibonacci sequence is a simple recurrence relation defined
by

Fn = Fn−1 ± Fn−2 (1.1)

Where the first two numbers are both 1, creating the sequence;

1, 1, 2, 3, 5, 8, 13, 21, 34 . . .

This sequence creates a very famous pattern called the golden spiral which is
a series of connected quarter circles each confined to a square of area of the
number in the sequence as seen below (taken from [6]) Where the random

Fibonacci sequence differs, is in the sign of the recurrence relationship,

tn = ±tn−1 ± tn−2 (1.2)

Where each ± sign is independent of each other and has a probability of 1
2

to be either + or −.
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2 The Absolute Value

If we want to look at the behaviour of the random Fibonacci sequence as n
increases then we need to look at the absolute value of the sequence —tn—.
So we need to write the sequence as

|tn| = | ± tn−1 ± tn−2| (2.1)

We now have four possible outcomes dependant on the signs, each with prob-
ability 1

4
,

|tn| = |+ tn−1 + tn−2| (2.2)

|tn| = | − tn−1 − tn−2| (2.3)

|tn| = |+ tn−1 − tn−2| (2.4)

|tn| = | − tn−1 + tn−2| (2.5)

Here we see that (2.2) and (2.3) both represent the absolute sum of the terms
however (2.4) and (2.5) both represent the difference of the terms. So we only
have two outcomes, each with probability 1

2
. Therefore, looking at the ab-

solute value of the random Fibonacci sequence we have the two equivalent
equations where the ± sign is chosen randomly with a probability of 1

2
,

tn = tn−1 ± tn−2 (2.6)

tn = ±tn−1 + tn−2 (2.7)
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3 Growth Rate

In the early 1600’s Johannes Kepler discovered that as n increases, the ratio
of the terms in the Fibonacci sequence approaches

ϕ =
1 +
√

5

2
(3.1)

This is known as the golden ratio, and is approximately equal to 1.618. In
1765 Leonhard Euler discovered a formula

Fn =
ϕn − (−( 1

ϕ
)n

√
5

(3.2)

Known as the Binet Formula, which shows that the Fibonacci numbers grow
at an exponential rate which is equal to the golden ratio. However this only
applies to the non-random Fibonacci sequence. It was shown with the use of
a Stern-Brocot tree that;

lim
n→∞

|tn|
1
n = 1.13198824 . . . (3.3)

Below is a graph (taken from [2]) that shows the trend of random Fibonacci
sequence as n increases.

This gives us the exponential growth rate for random Fibonacci sequences
and is called the Viswanath constant.
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4 The Lyapunov Exponent

If we re-write the random Fibonacci sequence using matrices we get[
tn−1
tn

]
=

[
0 1
1 ±1

] [
tn−2
tn−1

]
(4.1)

Where we use the two matrices[
0 1
1 1

]
and

[
0 1
1 −1

]
With a probability of 1

2
. Then we have the random matrix Mn chosen at n

which is independent of M for i = n. So we have[
tn−1
tn

]
= Mn−2 . . .M1

[
1
1

]
(4.2)

Where Mn−2 . . .M1 is a product of independent, distributed random matri-
ces. Furstenberg and Keston proved in random matrix theory the basic result

lim
n→∞

log ||Mn . . .M1||
n

= γ (4.3)

With probability 1. Using this result we see that

lim
n→∞

log ||Mn . . .M1||
n

= γf (4.4)

lim
n→∞

|tn|
1
n = eγf (4.5)

For a constant γf with probability 1, this constant is known as a Lyapunov
exponent. We also have that the exponential of the Lyapunov exponent is
equal to the Viswanath constant (growth rate of the random Fibonacci se-
quence)

eγf = 1.13198824 . . . (4.6)
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To determine the value of the Lyapunov exponent we use Furstenberg’s for-
mula which is as follows

γf =

∫
amp(x̄)dνf (x̄) (4.7)

Where x̄ represents directions in the real plane.
amp(x̄) represents a smooth function of x̄ which can be written as∫

log
||Yx||
||x||

dµ(Y ) (4.8)

Where Y is a random matrix from a set with distribution µ.
νf represents a probability measure over directions x which is defined by

νf (r) =
1

2
(4.9)

νf (rαL) =

{
1

1+φ
νf (rα), |α| even

φ
1+φ

νf (rα), |α| odd
(4.10)

νf (rαR) =

{
φ

1+φ
νf (rα), |α| even

1
1+φ

νf (rα), |α| odd
(4.11)

νf (lα) = νf (rᾱ (4.12)
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5 The Stern-Brocot Tree

The Stern-Brocot tree was created independently by Moritz Stern in 1858
and Achille Brocot in 1861. It is an infinite complete binary tree with two
roots,

0

1
and

1

0

These roots represent zero and infinity. These two nodes break off into two
children, the left child being

p+ x

q + y

Where p
q

is the nearest ancestor to the left of x
y
. The right child is expressed

by the equation
r + x

s+ y

where r
s

is the nearest ancestor to the right of x
y
. The tree is shown below

(taken from [4]).

However, Viswanath attempted to modify this version of the tree in an at-
tempt to find the value of νf . This tree is shown below (taken from [2]).
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This tree uses closed intervals at the nodes instead of rational numbers. The
difference this tree has from the conventional one is that it look at all of the
real line, not just the positive section. The root of the tree [−1

0
, 1
0
] represents

the closed interval [−∞,∞], which represents all of the real line . Its left
and right children [−1

0
, 0
1
] and [0

1
, 1
0
] represent the negative and positive halves

of the real line. Each node beyond these are formed by inserting a mediant
between each endpoint of the existing interval, where the mediant is defined
as

med(
a

b
,
c

d
) =

a+ c

b+ d

Also the mediant of two fractions satisfies the following inequality for a given
interval [a

b
, c
d
]

a

b
<
a+ c

b+ d
<
c

d

At depth N of the tree the real line will be divided into 2N intervals.
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6 Evaluation of eγf

We will now prove that the exponential of the Lyapunov exponent is equal
to the Viswanath constant.

eγf = 1.13198824 . . .

To do this we will use results from random matrix products which tells us
that for a product Pn = Yn . . . Y1, of independent and identically distributed
random matrices with a distribution µ.

We have

lim
n→∞

1

nr
log
|〈Pnx, y〉|
||Pnx||

= 0 (6.1)

With probability 1.

Which can be re-written as

lim
n→∞

log |〈Pnx, y〉| = lim
n→∞

log ||Pnx|| (6.2)

With probability 1, and r = 1.

We now introduce the theorem of Furstenburg and Kesten, which states,
for Yn for n ≥ 1 a sequence if independent and identically distributed ran-
dom matrices in GL(d,R) with distribution µ. if we have the property
E(log+||Y1|| < ∞, then with probability one the Lyapunov exponent can
be defined by

γ = lim
n→∞

1

n
log ||Y1 . . . Yn|| (6.3)

Therefore (6.1) becomes

γf = lim
n→∞

log |〈Pnx, y〉|
1
n (6.4)

With probability 1.

9



Now we can bring the log outside of the limit which gives us

γf = log lim
n→∞

|〈Pnx, y〉|
1
n (6.5)

Now taking the exponential of both sides we get

eγf = lim
n→∞

|〈Pnx, y〉|
1
n (6.6)

So here we have x and y being any 2x2 vector. If we take

x =

[
1
1

]
and y =

[
1
0

]

Then from (4.2) we obtain the vector

Pnx =

[
tn+1

tn+2

]
(6.7)

Hence the inner product is

〈Pnx, y〉 = tn+1(1) + tn+2(0) = tn+1 (6.8)

Therefore (6.6) can be written as

eγf = lim
n→∞

|tn+1|
1
n (6.9)

Now we need the denominator of the exponent to match the subscript, so we
use (6.9)

lim
n→∞

|tn+1|
1
n = lim

n→∞
|tn+1|

1
n

n+1
n+1 = lim

n→∞
|tn+1|

1
n+1

(1+ 1
n
) (6.10)

So that the equation can be equated to

lim
n→∞

|tn+1|
1

n+1 × lim
n→∞

|tn+1|
1

n+1
( 1
n
) (6.11)

10



Here the second limit in (6.11) will be 1 as n tends to infinity, so we are left
with

lim
n→∞

|tn+1|
1

n+1 (6.12)

Now, the Lyapunov exponent from (4.7) can be written as

γf =

∫∫
log
||Yx||
||x||

du(Y )dνf (x̄) (6.13)

Substituting in (4.8) we can rewrite the integral in the form

γf =

∫
amp(m)dνf (m) (6.14)

Where amp(m) is 1
4

log 4m2+1
(m2+1)2

.

We will use the definition of νf to determine γf . Using (4.12) we can see
that νf is symmetrical about 0, which is also true about (6.14). This can be
written as

γf = 2

∫ ∞
0

amp(m)dνf (m) (6.15)

Now we write this interval as a sum over the interval R so that R is divided
into Stern-Brocot intervals with depth N . Therefore we will have 2N inter-
vals at depth N , but we will only integrate over the positive half of the real
line. These intervals will be denoted by INj where 1 < j < 2N . We now
create a lower and upper bound for γf by using the min and max of our
amp(m) function. At level N taking L and the lower bound and U as the
upper bound, we obtain the inequality

L = 2
∑

min amp(m)νf (I
N
j ) < γf < 2

∑
max amp(m)νf (I

N
j ) = U (6.16)

So we know that γf is somewhere between L and U , also as N increases, the
size of the interval decreases, so we have

lim
n→∞

(U − L) = 0 (6.17)
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We now need to evaluate the minimum and maximum of amp(m) on each
interval as well as νf (I

N
j ), then sum over 2N positive intervals at the level

N + 1. At m = 1
2

we have our local minimum of amp(m), this is first seen in
the tree at depth 3. From the definitions of νf , it can be seen that νf (I

N
j ) is

equal to one of the values at N + 1 in the set

{1

2

φN − i
(1 + φ)N

| 0 ≤ i ≤ N} (6.18)

Viswanath computed these calculations for N = 28 using floating point arith-
metic and found the values of the lower and upper at bound at N = 28 to be:

fl(L28) = 0.1239755981508

fl(U28) = 0.1239755994406

Then taking the upper bound of the error terms:

|fl(L28)–L28|

|fl(U28)–U28|

It can be said with absolute certainty that

γf ∈ (0.1239755980, 0.129755995)

Therefore we can conclude

lim
n→∞

|tn|
1
n = eγf = 1.13198824 . . .
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