
JOINTSTRUCTUREDGRAPHLEARNINGAND
UNSUPERVISEDFEATURESELECTION

Yong Peng, Leijie Zhang, Wanzeng Kong, Feiping Nie and Andrzej Cichocki
yongpeng@hdu.edu.cn

Abstract
The central task in graph-based unsupervised
feature selection (GUFS) depends on two folds,
one is to accurately characterize the geometri-
cal structure of the original feature space with
a graph and the other is to make the selected
features well preserve such intrinsic structure.
Currently, most of the existing GUFS methods
use a two-stage strategy which constructs graph
first and then perform feature selection on this
fixed graph. Since the performance of feature se-
lection severely depends on the quality of graph,
the selection results will be unsatisfactory if the
given graph is of low-quality. To this end, we
propose a joint graph learning and unsupervised
feature selection (JGUFS) model in which the
graph can be adjusted to adapt the feature se-
lection process. The JGUFS objective function
is optimized by an efficient iterative algorithm
whose convergence and complexity are analyzed
in detail. Experimental results on representa-
tive benchmark data sets demonstrate the im-
proved performance of JGUFS in comparison
with state-of-the-art methods and therefore we
conclude that it is promising of allowing the fea-
ture selection process to change the data graph.

Model Formulation

min
S,W,F

‖S−A‖2F + αTr(FTLsF)+

β(‖(XW − F‖2F + γ‖W‖2,1)
s.t. S1 = 1,S ≥ 0,FTF = Ic,F ≥ 0

(1)

where X ∈ Rn×d is the data matrix, W ∈ Rd×c

is the projection matrix, β and γ are regulariza-
tion parameters. Similar to [1, 2], we impose the
non-negativity on F here

Conclusion
In this paper, we proposed a novel GUFS
method, termed JGUFS, which simultaneously
performs graph construction and feature selec-
tion. Instead of performing feature selection on
a fixed graph, JGUFS successfully avoided the
disadvantages caused by the two-stage strategy.
In JGUFS, the subobjectives respectively cor-
responding to graph construction and unsuper-
vised feature selection could co-evolve towards
the optimum. An efficient iterative optimization
method with convergence guarantee was pre-
sented to optimize the JGUFS objective. Exten-
sive experiments were conducted on representa-
tive data sets to demonstrate the excellent per-
formance of JGUFS in comparison with state-
of-the-art methods.

References
[1] Zhigang Ma Zi Huang Yi Yang, Heng Tao Shen and

Xiaofang Zhou. L21-norm regularized discriminative
feature selection for unsupervised learning. In Inter-
national Joint Conference on Artificial Intelligence,
pages 1589–1594, 2011.

[2] Jing Liu Xiaofang Zhou Zechao Li, Yi Yang and Han-
qing Lu. Unsupervised feature selection using non-
negative spectral analysis. In AAAI Conference on
Artificial Intelligence, pages 1026–1032, 2012.

Performance in Feature Selection
Table 1: Comparison of of clustering for different feature selection methods (ACC/NMI±std).

ACC JAFFE UMIST USPS MNIST COIL20 WebKB ISOLET
All-Fea 72.1±3.3 42.9±2.8 63.7±4.1 51.8±4.7 61.7±2.4 55.9±3.1 57.4±3.9
MaxVar 76.3±2.9 46.7±2.4 64.9±3.1 53.0±2.9 61.1±2.8 54.8±2.3 56.9±2.7
LapScore 77.2±3.2 45.8±3.0 64.1±3.2 53.9±3.5 62.1±2.1 56.1±2.8 56.8±2.9
MCFS 79.5±2.7 46.7±3.1 65.1±4.7 55.9±3.7 60.9±2.3 61.5±2.3 60.9±2.5
FSSL 85.6±2.2 51.9±3.3 66.5±2.4 57.1±3.8 62.5±2.8 62.3±2.7 64.9±3.1
UDFS 84.7±2.3 48.9±3.8 66.3±3.0 56.7±3.2 60.8±2.7 61.9±2.9 64.7±3.6
NDFS 86.9±2.5 51.1±3.7 66.9±2.7 58.5±2.8 63.3±2.1 62.5±3.0 65.1±3.9
JELSR 86.5±2.3 53.7±3.2 67.8±2.9 58.1±3.1 64.8±1.9 61.8±2.9 63.7±2.8
JGUFS 88.3±2.4 57.8±2.6 69.7±2.8 59.3±3.0 68.9±1.6 63.8±2.7 66.8±3.2
NMI JAFFE UMIST USPS MNIST COIL20 WebKB ISOLET
All-Fea 78.9±2.1 63.5±2.2 59.7±1.8 46.3±2.1 73.5±2.8 11.7±4.2 73.9±1.7
MaxVar 80.3±2.0 65.1±2.0 60.9±1.5 47.9±2.3 71.8±3.1 16.9±2.1 73.7±1.8
LapScore 81.9±1.8 64.7±2.6 60.3±1.3 48.3±2.0 73.9±2.9 13.4±3.5 72.1±1.1
MCFS 82.3±1.8 65.6±1.8 61.7±1.5 50.3±1.7 74.8±2.3 18.3±3.7 74.9±1.6
FSSL 88.6±1.3 67.7±2.0 62.3±1.3 50.8±2.1 75.1±2.7 18.5±3.5 76.8±1.7
UDFS 85.3±2.0 66.5±2.1 61.8±1.5 50.1±1.5 75.7±1.9 17.1±2.9 76.3±1.9
NDFS 87.6±1.9 68.9±2.5 61.3±1.1 51.6±1.1 77.3±1.8 17.6±2.7 78.4±1.2
JELSR 86.9±2.1 70.3±1.7 62.0±1.3 51.1±1.4 77.9±1.7 18.0±3.1 75.8±1.1
JGUFS 89.8±0.6 73.9±2.1 63.9±1.1 52.9±1.0 79.8±1.3 20.3±2.3 79.9±1.2

Optimization
With other two variables fixed, the following for-
mula can be proved:

O(Ft+1,WtSt) ≤ O(Ft,WtSt),

O(Ft+1,Wt+1St) ≤ O(Ft+1,WtSt)

O(Ft+1,Wt+1St+1) ≤ O(Ft+1,Wt+1St)

We conclude that JGUFS objective function
monotonically decreases under the optimization
in Algorithm. 1.

Algorithm 1 Optimization to JGUFS objective
function
Input: Data matrix X ∈ Rn×d, λ, β, and γ, c,

the dimension of projected subspace c;
Output: Rank features based on the values of
‖wi‖2|di=1 in descending order and then se-
lect the top-ranked ones.

1: Initialization. Construct the initial graph
affinity matrix A based on the ’HeatKer-
nel’ function; Calculate F ∈ Rn×c by the
c eigenvectors of the graph Laplacian LA =

DA − AT+A
2 corresponding to the c small-

est eigenvalues; Initialize M ∈ Rd×d as an
identity matrix;;

2: while not converged do
3: Update S by solving:

min
Si1=1,si≥0

‖si − (ai −
α

2
di)‖2F ,

where, dij = ‖fi− fj‖22 and di as a vector
with the j-th element equal to dij . Simi-
larly, we get ai and si.

4: Update W by:
W = (XTX+ γM)−1XTF

5: Update M by:

mii =
1

2‖w‖2
=

1

2
√
wiwT

i + δ

6: Update F by:

dij ←
(λF)ij

RF+ λFFTF
7: end while

Analysis
Figure 1 illustrates the clustering performance of
JGUFS on COIL20 with different settings of pa-
rameters. From this figure, we find that JGUFS
provides excellent performance when the param-
eters are set as different values in a wide range.
Further, we can observe that even if a small
number of features are selected, JGUFS can still
achieve relatively good clustering results.

Figure 1: Performance of JGUFS algorithm for
large variation of set of control parameters.

Figure 2: Convergence speed of JGUFS for UMIST
and COIL20 data sets.
Figure 2 shows the convergence curves of the
JGUFS objective function in terms of the num-
ber of iterations on UMIST and COIL20 from
which we can observe that JGUFS has a rela-
tively fast convergence speed.


