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Abstract

n

I'he central task in graph-based unsupervised
eature selection (GUFS) depends on two folds,
one is to accurately characterize the geometri-
cal structure of the original feature space with
a graph and the other is to make the selected
features well preserve such intrinsic structure.
Currently, most of the existing GUFS methods
use a two-stage strategy which constructs graph
first and then perform feature selection on this
fixed graph. Since the performance of feature se-
lection severely depends on the quality of graph,
the selection results will be unsatistactory if the
given graph is of low-quality. To this end, we
propose a joint graph learning and unsupervised
feature selection (JGUFS) model in which the
eraph can be adjusted to adapt the feature se-
lection process. The JGUFS objective function
is optimized by an efficient iterative algorithm
whose convergence and complexity are analyzed
in detail. Experimental results on representa-
tive benchmark data sets demonstrate the im-
proved performance of JGUFS in comparison
with state-of-the-art methods and therefore we
conclude that it is promising of allowing the fea-
ture selection process to change the data graph.

Model Formulatio:

min [|S — A||% + aTr(F' LF)+
S W.F

BUIXW —F7 +7[[W2.1)
st.81=1,S>0,F'F=1.,F>0

(1)

where X € R"*? is the data matrix, W € R%*¢

is the projection matrix, 5 and ~ are regulariza-
tion parameters. Similar to |1, 2|, we impose the
non-negativity on F here

Conclusion

In this paper, we proposed a novel GUEFS
method, termed JGUFS, which simultaneously
performs graph construction and feature selec-
tion. Instead of performing feature selection on
a fixed graph, JGUFS successfully avoided the
disadvantages caused by the two-stage strategy.
In JGUEFS, the subobjectives respectively cor-
responding to graph construction and unsuper-
vised feature selection could co-evolve towards
the optimum. An efficient iterative optimization
method with convergence guarantee was pre-
sented to optimize the JGUF'S objective. Exten-
sive experiments were conducted on representa-
tive data sets to demonstrate the excellent per-
formance of JGUFS in comparison with state-
of-the-art methods.
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Performance in Feature Selection

Table 1: Comparison of of clustering for different feature selection methods (ACC/NMI+std).
ACC JAFFE UMIST USPS MNIST COIL20 WebKB | ISOLET
All-Fea 72.1x3.3 | 42.942.8 | 63.7£4.1 | 51.8+4.7 | 61.7£2.4 | 55.9£3.1 | 57.44+3.9
MaxVar 76.3+2.9 46.7+2.4 04.9+3.1 53.01+2.9 01.11+2.8 54.8+£2.3 56.9+2.7
LapScore 77.24+3.2 45.843.0 04.11+3.2 53.913.5 062.14+2.1 56.1+2.8 56.81£2.9
MCFES 79.5+£2.7 | 46.7£3.1 | 65.1£4.7 | 55.94+3.7 | 60.9+=2.3 | 61.5x=2.3 | 60.9£2.5
FSSL 85.6+2.2 | 51.9+3.3 | 66.0£2.4 | 57.1£3.8 | 62.50+2.8 | 62.31+2.7 | 64.91+3.1
UDFS 84.7£2.3 | 48.91+3.8 | 66.3£3.0 | 56.7=x=3.2 | 60.8&£2.7 | 61.9£2.9 | 64.713.6
NDFS 86.9+2.5 | 51.1£3.7 | 606.9x2.7 | 58.5+2.8 | 63.3£2.1 | 62.5+3.0 | 65.1£3.9
JELSR 86.0+2.3 | 53.7£3.2 | 67.8+£2.9 | 58.1£+3.1 | 64.8£1.9 | 61.84+2.9 | 63.7£2.8
JGUFS 88.3+2.4 | 57.8E£2.6 | 69.7x2.8 | 59.3+3.0 | 68.9£1.6 | 63.8+2.7 | 606.8=3.2
NMI JAFFE UMIST USPS MNIST COIL20 WebKB | ISOLET
All-Fea 78.9x2.1 | 63.0£2.2 | 59.7=1.8 | 46.3*=2.1 | 73.0£2.8 | 11.7=4.2 | 73.9£1.7
MaxVar | 80.3+£2.0 | 65.1£2.0 | 60.9£1.5 | 47.94+2.3 | 71.8£3.1 | 16.9+2.1 | 73.7£1.8
LapScore | 81.9+1.8 | 64.7£2.6 | 60.3+1.3 | 48.3+2.0 | 73.9£2.9 | 13.4+3.5 | 72.1%1.1
MCFEFS 82.3+1.8 | 65.0£1.8 | 61.7=1.5 | 50.3x1.7 | 74.8£2.3 | 18.3x3.7 | 74.9£1.6
FSSL 88.01.3 | 67.7£2.0 | 62.3£1.3 | 50.8+=2.1 | 75.1x2.7 | 18.5£3.5 | 76.8E£1.7
UDFS 85.3+2.0 | 606.0x2.1 | 61.8£1.5 | 50.1x1.5 | 75.7+1.9 | 17.1+2.9 | 76.3=1.9
NDEFS 87.0+1.9 | 68.9£2.5 | 61.3x=1.1 | b1.0x1.1 | 77.3£1.8 | 17.6x£2.7 | 78.4+1.2
JELSR 80.91+2.1 | 70.3x1.7 | 62.0£1.3 | 51.1=1.4 | 77.9£1.7 | 18.04+3.1 | 75.8%+1.1
JGUFES 89.8+£0.6 | 73.9+2.1 | 63.9£1.1 | 52.9x1.0 | 79.841.3 | 20.3£2.3 | 79.911.2

Optimization

With other two variables fixed, the following for-
mula can be proved:

O(F ™ W'SH < O(F*, W'S"),

O(Ft—l_l,wt—l_lst) S O(Ft+1,WtSt)

O(Ft—l—l Wt—I—lst—l—l) < O(Ft—l—l Wt—l—lst)
We conclude that JGUFS objective function

monotonically decreases under the optimization
in Algorithm. 1.

Algorithm 1 Optimization to JGUFS objective
function

Input: Data matrix X € R™*¢ X, 3, and 7, c,
the dimension of projected subspace c;
Output: Rank features based on the values of
|w;||2|¢—; in descending order and then se-
lect the top-ranked ones.
1: Initialization. Construct the initial graph
affinity matrix A based on the 'HeatKer-
nel’ function; Calculate F € R"*¢ by the

c eigenvectors of the graph Laplacian La =
Da AT2+A
est eigenvalues; Initialize M &
identity matrix;;

2: while not converged do

3:  Update S by solving:

8
|si — (a; — §di)H%»

corresponding to the ¢ small-
RI*? a5 an

min
S;1=1,5;,>0
where, d;; = ||f; — f;l|5 and d; as a vector
with the j-th element equal to d;;. Simi-
larly, we get a; and s;.
4:  Update W by:

W= (XX +yM) ' X'F

5.  Update M by:
1 1
Mgy = —
2[lwll2 2y/w;wl + 6
6: Update F by:

dij <

(AF)4;
RF + \FF'F

7: end while

Analysis

Figure 1 illustrates the clustering performance of
JGUFS on COIL20 with different settings of pa-
rameters. From this figure, we find that JGUF'S
provides excellent performance when the param-
eters are set as different values in a wide range.
Further, we can observe that even if a small
number of features are selected, JGUF'S can still
achieve relatively good clustering results.

(e) ACCuvs.

Performance of JGUFS algorithm for
large variation of set of control parameters.

(f) NMI vs. ~

Figure 1:
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Figure 2: Convergence speed of JGUFS for UMIST
and COIL20 data sets.

Figure 2 shows the convergence curves of the

JGUEF'S objective function in terms of the num-

ber of iterations on UMIST and COIL20 from
which we can observe that JGUFS has a rela-
tively tast convergence speed.




