Inverse Function Integral Theorem

Ivan V. Morozov

October 2019

In this document a theorem shall be introduced dealing with evaluating improper integrals as proper integrals of inverse functions. To start, the theorem is expressed below.

Theorem

For any integrable function f(x) the derivative f'(x) of which is always either positive or negative in the domain $x \in \mathbb{R}$, and that has a limit $\lim_{x\to\infty} f(x) = 0$, its integral can be expressed as

$$\int_0^\infty f(x) \, dx = \int_0^{\lim_{x \to 0} f(x)} f^{-1}(x) \, dx$$

Proof

One may consider an arbitrary function f(x) given by

$$f(x) = y$$

If the variables are swapped as such,

$$f(y) = x$$

y can be said to be the inverse function of x,

$$y = f^{-1}(x)$$

Consider the integrals of a function and its inverse,

$$\int f(x) \, dx = F(x)$$

and

$$\int f^{-1}(x) \, dx = F^{-1}(x)$$

where F(x) and $F^{-1}(x)$ are inverses of each other. The integrals can be defined and done with boundaries of zero to infinity, and thus one has

$$\int_0^\infty f(x) \, dx = \lim_{x \to \infty} F(x) - \lim_{x \to 0} F(x)$$

The function f(x) must have a limit

$$\lim_{x \to \infty} f(x) = 0$$

and therefore its inverse will have the limit

$$\lim_{x \to 0} f^{-1}(x) = \infty$$

From this one can say that

$$f^{-1}(f(0)) = 0$$

This substitution can be made into the integral of f(x) as such,

$$\int_0^\infty f(x) \, dx = \lim_{x \to f^{-1}(0)} F(x) - \lim_{x \to f^{-1}(f(0))} F(x)$$

Take the inverse of the functions on the left side,

$$\int_0^\infty f(x) \, dx = \lim_{x \to f(0)} F^{-1}(x) - \lim_{x \to f(f^{-1}(0))} F^{-1}(x)$$

 $f(f^{-1}(0))$ can be simplified as

$$f\left(f^{-1}(0)\right) = \lim_{x \to \infty} f(x) = 0$$

The integral now becomes

$$\int_0^\infty f(x) \, dx = \lim_{x \to f(0)} F^{-1}(x) - \lim_{x \to 0} F^{-1}(x)$$

which can be simplified into the integral of the inverse function,

$$\int_0^\infty f(x) \, dx = \int_0^{\lim_{x \to 0} f(x)} f^{-1}(x) \, dx$$

If f(x) has an output at zero, the equation can be shown as

$$\int_0^\infty f(x) \, dx = \int_0^{f(0)} f^{-1}(x) \, dx$$

Q.E.D.