Inverse Function Integral Theorem

Ivan V. Morozov

October 2019

In this document a theorem shall be introduced dealing with evaluating improper integrals as proper integrals of inverse functions. To start, the theorem is expressed below.

Theorem

For any integrable function $f(x)$ the derivative $f^{\prime}(x)$ of which is always either positive or negative in the domain $x \in \mathbb{R}$, and that has a $\operatorname{limit}_{\lim }^{x \rightarrow \infty} \boldsymbol{f}(x)=0$, its integral can be expressed as

$$
\int_{0}^{\infty} f(x) d x=\int_{0}^{\lim _{x \rightarrow 0} f(x)} f^{-1}(x) d x
$$

Proof

One may consider an arbitrary function $f(x)$ given by

$$
f(x)=y
$$

If the variables are swapped as such,

$$
f(y)=x
$$

y can be said to be the inverse function of x,

$$
y=f^{-1}(x)
$$

Consider the integrals of a function and its inverse,

$$
\int f(x) d x=F(x)
$$

and

$$
\int f^{-1}(x) d x=F^{-1}(x)
$$

where $F(x)$ and $F^{-1}(x)$ are inverses of each other. The integrals can be defined and done with boundaries of zero to infinity, and thus one has

$$
\int_{0}^{\infty} f(x) d x=\lim _{x \rightarrow \infty} F(x)-\lim _{x \rightarrow 0} F(x)
$$

The function $f(x)$ must have a limit

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

and therefore its inverse will have the limit

$$
\lim _{x \rightarrow 0} f^{-1}(x)=\infty
$$

From this one can say that

$$
f^{-1}(f(0))=0
$$

This substitution can be made into the integral of $f(x)$ as such,

$$
\int_{0}^{\infty} f(x) d x=\lim _{x \rightarrow f^{-1}(0)} F(x)-\lim _{x \rightarrow f^{-1}(f(0))} F(x)
$$

Take the inverse of the functions on the left side,

$$
\int_{0}^{\infty} f(x) d x=\lim _{x \rightarrow f(0)} F^{-1}(x)-\lim _{x \rightarrow f\left(f^{-1}(0)\right)} F^{-1}(x)
$$

$f\left(f^{-1}(0)\right)$ can be simplified as

$$
f\left(f^{-1}(0)\right)=\lim _{x \rightarrow \infty} f(x)=0
$$

The integral now becomes

$$
\int_{0}^{\infty} f(x) d x=\lim _{x \rightarrow f(0)} F^{-1}(x)-\lim _{x \rightarrow 0} F^{-1}(x)
$$

which can be simplified into the integral of the inverse function,

$$
\int_{0}^{\infty} f(x) d x=\int_{0}^{\lim _{x \rightarrow 0} f(x)} f^{-1}(x) d x
$$

If $f(x)$ has an output at zero, the equation can be shown as

$$
\int_{0}^{\infty} f(x) d x=\int_{0}^{f(0)} f^{-1}(x) d x
$$

Q.E.D.

