How to do the Chinese Remainder Theorem

Ernest Michael Nelson

July 25, 2017

1 Introduction

In this article we will be doing a step by step on how to do the Chinese Reminder Theorem. An we will be given a system of three congruences.

2 System of Congruenhces

$$
\begin{gathered}
x_{1} \equiv(3 \bmod 8) \\
x_{2} \equiv(1 \bmod 9) \\
x_{3} \equiv(4 \bmod 11)
\end{gathered}
$$

3 Formulas

The given formula is

$$
\bar{x} \equiv a_{1} \cdot N_{1} \cdot x_{1}+a_{2} \cdot N_{2} \cdot x_{2}+a 3 \cdot N_{3} \cdot x_{3}\left(\bmod n_{1} \cdot n_{2} \cdot n_{3}\right)
$$

and we will also need the inverse formula

$$
N_{1} x_{k} \equiv a_{1}\left(\bmod n_{k}\right)
$$

4 Proof:

The very first thing we want to calculate is our modules in the Chinese Remainder Theorem (CRT). An by observation we are also given a_{1} from the given system of congruences.

$$
\begin{gathered}
\bar{x} \equiv 3 \cdot N_{1} \cdot x_{1}+1 \cdot N_{2} \cdot x 2+4 \cdot N_{3} \cdot x_{3}(\bmod 8 \cdot 9 \cdot 11) \\
\quad \bar{x} \equiv 3 \cdot N_{1} \cdot x_{1}+1 \cdot N_{2} \cdot x_{2}+4 \cdot N_{3} \cdot x_{3}(\bmod 792)
\end{gathered}
$$

Next we will calculate the N_{1}, N_{2} and N_{3} of the (CRT). Fri st we will calculate N_{1} and then repeat the process for N_{2} and N_{3}.

$$
N_{1}=\frac{8 \cdot 9 \cdot 11}{8}=99
$$

$$
\begin{aligned}
& N_{2}=\frac{8 \cdot 9 \cdot 11}{9}=88 \\
& N_{3}=\frac{8 \cdot 9 \cdot 11}{11}=72
\end{aligned}
$$

Now we input N_{1}, N_{2}, and N_{3} into the given formula.

$$
\bar{x} \equiv 3 \cdot 99 \cdot x_{1}+1 \cdot 88 \cdot x_{2}+4 \cdot 72 \cdot x_{3}(\bmod 792)
$$

Then we simplify the formula.

$$
\bar{x} \equiv 297 \cdot x_{1}+88 \cdot x_{2}+288 \cdot x_{3}(\bmod 792)
$$

On the next step we will calculate the x_{1}, x_{2}, and x_{3} in the (CRT).First we will show how to solve x_{1} then x_{2} and x_{3}.

5 Solving for x_{1}, x_{2} and x_{3}

From the formula section above we plug N_{1} into our congruences.
For x_{1}

$$
99 x_{1} \equiv 1(\bmod 8)
$$

Next step we dived 8 into 99 and remainder we put in front of x_{1}.

$$
3 x_{1} \equiv 1(\bmod 8)
$$

Now we add 8 to our congruences.

$$
3 x_{1} \equiv 9(\bmod 8)
$$

Final we dived 3 into 9 and get our answer for x_{1}.

$$
x_{1} \equiv 3(\bmod 8)
$$

Therefore $x_{1}=3$.
For x_{2}

$$
88 x_{2} \equiv 1(\bmod 9)
$$

We repeat the process for x_{2} as the same for x_{1} so we dived 9 into 88 .

$$
7 x_{2} \equiv 1(\bmod 9)
$$

Then we add 9 to the congruences.

$$
7 x_{2} \equiv 10(\bmod 9)
$$

The next step we subtract 9 on the left hand side.

$$
-2 x_{2} \equiv 10(\bmod 9)
$$

To make the congruence correct we make $x_{2}=-5$.

$$
2(-5) \equiv 10(\bmod 9)
$$

Therefor $x_{2}=-5$
For x_{3}

$$
72 x_{3} \equiv 1(\bmod 11)
$$

First we dived 72 by 11 and put the remainder in front of x_{3}.

$$
6 x_{3} \equiv 1(\bmod 11)
$$

Now we add 11 to the congruence.

$$
6 x_{3} \equiv 12(\bmod 11)
$$

Final we dived 6 on both sides.

$$
x_{3} \equiv 2(\bmod 11)
$$

Therefore $x_{3}=2$
After getting x_{1}, x_{2}, and x_{3} we input into our (CRT) formula and calculate.

$$
\begin{gathered}
\bar{x} \equiv((297 \cdot 3+88 \cdot(-5)+288 \cdot 2) \bmod 792) \\
\bar{x} \equiv((891+(-440)+576) \bmod 792) \\
\bar{x} \equiv 1027(\bmod 792)
\end{gathered}
$$

Lastly we reduce by subtracting 792 from 1027.

$$
\begin{gathered}
\bar{x} \equiv 235(\bmod 792) \\
(q . e . d)
\end{gathered}
$$

6 Reference:

Bruce M.Burton, Element of Number Theory, page 79
Joseph Cutrona,YouTube.com, Basic example of Chinese Remainder Theorem

