Homework 3
 Mathematical Methods I: Fall 2017

Udit Gupta

September 18, 2017

1. Problem 1 - Elastic Rods:

(a) Show that The elastic energy in a bent beam is is

$$
U[y]=\int_{0}^{L} \frac{1}{2} Y I\left(y^{\prime \prime}\right)^{2} d z
$$

given that the elastic energy per unit length of a bent steel rod is given by $\frac{1}{2} \frac{Y I}{R^{2}}$ where R is the radius of curvature due to bending.

Proof. From vector calculus we know that the length of the radius of curvature vector for a curve $y(x)$ is given by

$$
|\vec{R}|=\frac{\left(1+y^{\prime 2}\right)^{\frac{3}{2}}}{y^{\prime \prime}} \approx \frac{1}{y^{\prime \prime}}
$$

where we approximate $y^{\prime 2}$ to be small enough to ignore in this case. Then we have

$$
\left.U[y]=\int_{0}^{L} \frac{1}{2} \frac{Y I}{R^{2}} d z=\int_{0}^{L} \frac{1}{2} \frac{Y I}{(} y^{\prime \prime}\right)^{2} l
$$

(b) Show that if there is a load of mass M on top of the rod, the energy can be approximated by

$$
U[y]=\int_{0}^{L}\left(\frac{Y I}{2}\left(y^{\prime \prime}\right)^{2}-\frac{M g}{2}\left(y^{\prime}\right)^{2}\right) d z
$$

Proof. Gravitational potential energy is clearly going to be

$$
U_{g}=M g L_{z}
$$

where L_{z} is the height of the load after the rod bends. We can calculate this by:

$$
L_{z}=\int d z
$$

along the curve of the rod. We know that $\left.d l=\sqrt{(} 1+y^{\prime 2}\right) d z$, so we plug this into

$$
\int d z=\int \frac{d l}{\sqrt{1+y^{\prime 2}}}
$$

But now we assume that the deflection is very small so we get that $d l \approx d z$ and expand the denominator:

$$
U_{g}=\int_{0}^{L} M g d z \approx \int_{0}^{L} M g\left(1-\frac{1}{2} y^{\prime 2}\right) d z
$$

Thus the total energy functional is of the desired form (excluding the constant term $M g L$).
(c) Show that the column is unstable to buckling and collapses when $M g \geq \frac{\pi^{2}}{L^{2}} Y I$.

Proof. Plugging in the ansatz for the solutions:

$$
y(z)=\sum_{n+=1}^{\infty} a_{n} \sin \left(\frac{n \pi z}{L}\right)
$$

into the energy functional:

$$
U=\sum_{n=1}^{\infty} a_{n}^{2} \int_{0}^{L} \frac{Y I}{2}\left(\frac{n \pi}{L}\right)^{4} \sin ^{2}\left(\frac{n \pi z}{L}\right)-\frac{M g}{2}\left(\frac{n \pi}{L}\right)^{2} \cos ^{2}\left(\frac{n \pi z}{L}\right) d z
$$

Doing the trig integrals out, we get factors of $\frac{1}{2}$ out, and the remaining terms depend on n. We want to know when these terms are negative for a given n value, which would tell us that the energy drops down to a negative value. This first happens at $n=1$ as the coefficient becomes negative when

$$
M g \geq Y I\left(\frac{n \pi}{L}\right)^{2}
$$

(d) The light cantilever: Find $y(z)$ for $0<z<L$ assuming that a rod is fixed into a wall with a load of mass M hanging at the end.

Proof. We want to minimize the energy functional

$$
U=\int_{0}^{L}\left(\frac{Y I}{2}\left(y^{\prime \prime}\right)^{2}\right) d z+M g y(L)
$$

But we will be careful not to throw out terms when we integrate by parts.

$$
\begin{aligned}
U(y+\delta y)-U(y) & =\int_{0}^{L} \frac{Y I}{2}\left((y+\delta y)^{2}-\left(y^{\prime \prime}\right)^{2}\right) d z+M g(y(L)+\delta y(L)-y(L)) \\
\delta U & =\int_{0}^{L} \frac{Y I}{2}\left(2 y^{\prime \prime}(\delta y)^{\prime \prime}+\left(\delta y^{\prime \prime}\right)^{2}\right) d z+M g \delta y(L) \\
\delta U & =\int_{0}^{L} \frac{Y I}{2}\left(2 y^{\prime \prime}(\delta y)^{\prime \prime}+\mathcal{O}(\delta y)^{2}\right) d z+M g \delta y(L) \\
\delta U & =\int_{0}^{L} Y I\left(y^{\prime \prime}(\delta y)^{\prime \prime} d z+M g \delta y(L)\right.
\end{aligned}
$$

We new integrate by parts twice:

$$
\begin{aligned}
& \delta U=\left.\left(y^{\prime \prime} \delta y\right)\right|_{0} ^{L}-\int_{0}^{L} y^{(3)}(\delta y)^{\prime}+M g \delta y(L) \\
& \delta U=\left.\left(y^{\prime \prime} \delta y\right)\right|_{0} ^{L}-\left.\left(y^{3} \delta y\right)\right|_{0} ^{L}+\int_{0}^{L} y^{(4)} \delta y d z+M g \delta y(L)=0
\end{aligned}
$$

This is true for any $\delta y(L)$, knowing that $\delta y(0)=0$. If we set all these terms to zero, and factor out the terms dependent on we the differential equation

$$
y^{(4)}=0
$$

with the boundary conditions

$$
\begin{array}{r}
M g=Y I y^{(3)} \\
y^{\prime \prime}(L)=0 \\
y^{\prime}(0)=y(0)=0
\end{array}
$$

The most general solution to the differential equation is $y(z)=A z^{3}+B z^{2}+C z+D$ But we know immediately that D is zero. From the other boundary conditions we get:

$$
\begin{array}{r}
y^{\prime \prime}(L)=6 A L+2 B=0 \\
6 A=\frac{M g}{Y I}
\end{array}
$$

Thus the solution is

$$
y(z)=\frac{M g}{Y I}\left(\frac{1}{6} z^{3}-\frac{L}{2} z^{2}\right)
$$

And

$$
y(L)=-\frac{M g L^{2}}{3 Y I}
$$

2. Lagrange Multipliers
(a) Find the stationary points of the function

$$
f(x, y)=13 x^{2}+8 x y+7 y^{2}
$$

subject to $x^{2}+y^{2}=1$.
Proof. We first express this as a matrix multiplication:

$$
\mathbf{x}^{t} \mathbf{A} \mathbf{x}=f(x, y)
$$

Minimizing this function with the constraint gives us an eigenvalue problem to solve:

$$
<\mathbf{x}, \mathbf{A} \mathbf{x}>-\lambda(<\mathbf{x}, \mathbf{x}>-1)=g(\mathbf{x})
$$

We then differentiate:

$$
\frac{\partial g}{\partial \mathbf{x}}=2 \mathbf{A} \mathbf{x}-2 \lambda x=0
$$

And arrive at

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

. Then we can find the eigenvalues of this matrix using the standard techniques. We find them to be

$$
\lambda=10,5
$$

We can also find normalized eigenvectors and we find them to be

$$
e_{1}=\frac{1}{\sqrt{5}}(2,1)
$$

and

$$
e_{2}=\frac{1}{\sqrt{5}}(-1,2)
$$

This gives us our two stationary points. But since we know the constraint is in terms of x^{2} and y^{2}, we actually get 4 stationary points that are

$$
(x, y)= \pm e_{1}, \pm e_{2}
$$

3. The Catenary Again:
(a) From the resulting functional derivative, derive two coupled equations for the catenary, one for $x(s)$ and one for $y(s)$.

Proof. We have to minimize the energy functional

$$
U(x, y)=\int_{0}^{L} \rho g y(s) d s+\int_{0}^{L}\left(\dot{x}^{2}+\dot{y}^{2}-1\right) \lambda(s) d s
$$

where s is the coordinate along the curve. We can use euler-lagrange equations

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{d}{d s}\left(\frac{\partial f}{\partial \dot{x}}\right) \\
\frac{\partial f}{\partial y} & =\frac{d}{d s}\left(\frac{\partial f}{\partial \dot{y}}\right) \Rightarrow \\
0 & =\dot{\lambda} \dot{x}+\lambda \ddot{x} \\
\rho g & =2 \dot{\lambda} \dot{y}+2 \lambda \ddot{y}
\end{aligned}
$$

Now introduce $\dot{x}=\cos \psi, \dot{y}=\sin \psi$

$$
\begin{array}{r}
0=\dot{\lambda} \cos \psi-\lambda \sin \psi \dot{\psi} \\
\rho g=2(\dot{\lambda} \sin \psi+\lambda \cos \psi \dot{\psi})
\end{array}
$$

Square these and add them up, we get:

$$
(\rho g)^{2}=4\left(\dot{\lambda}^{2}+\lambda^{2} \dot{\psi}^{2}\right)
$$

From looking at a section of chain, we can deduce that

$$
T(s+d s)_{y}-T(s)_{y}=\rho g d s
$$

and

$$
T(s)_{x}=T(s+d s)_{x}
$$

If we expand $T(s+d s)_{y}=T(s)_{y}+\dot{T}_{y} d s$ and plug in, we find that $\dot{T}_{y}=\rho g$. We can then define $T_{x}=2 \lambda \cos \psi$ and $T_{y}=2 \lambda \sin \psi$ such that $\dot{T}_{y}^{2}+\dot{T}_{x}^{2}=(\rho g)^{2}$.
(b) Now find the material density $\rho(s)$ in order for a length of chain $\frac{\pi a}{2}$ to hang in an arc of a circle of radius a.

Proof. If we draw the arc for ψ along the arc of the circle, we can deduce that $\psi=\frac{s}{a}$. We also know that $\dot{T}_{x}=0$, thus $\frac{d}{d s}(\lambda \cos \psi)=0, \lambda(s) \cos \psi=K$. Thus

$$
\rho(s) g=2 \partial_{s}(\lambda \sin \psi(s))=2 \partial_{s}\left(\operatorname{Ktan}\left(\frac{s}{a}\right)\right)=\frac{2 K}{a} \sec ^{2}\left(\frac{s}{a}\right)
$$

