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Parallel computing

Figure 1: Multitasking

Concurrency and multitasking
Multiprocessing and multithreading
History of parallel computing

Did you know?

The origins of true parallelism go back to Federico Luigi, Conte Menabrea
and his ”Sketch of the Analytic Engine Invented by Charles Babbage”,
1842
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Motivation

Leverage hardware and software advances

Increase performance

Improve response time

Increase scalability

Did you know?

The ILLIAC IV was one of the first attempts to build a massively parallel
computer. The ILLIAC IV design featured fairly high parallelism with up to
256 processors, used to allow the machine to work on large data sets in
what would later be known as vector processing.
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Threads and processes

Process

Multiprocessing

Figure 2: Structure of a process
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Process

A PROCESS is created by the operating system as a set of physical and
logical resources to run a program. Each process has:

heap, static, and code memory segments.

environment information, including a working directory and file
descriptors.

process, group, and user IDs.

interprocess communication tools and shared libraries.
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Thread

A THREAD is the execution state of a program instance, sometimes
called an independent flow of control. Each thread runs within the context
of a parent process and is characterised by:

registers to manage code execution.

a stack.

scheduling properties (such as priority).

its own set of signals.

some thread-specific data.
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Multitasking

Figure 3: Stack

- Process
is heavy weight or resource intensive.
- Thread is light weight
taking lesser resources than a process.
- Process switching needs
more interaction with operating system.
- Thread switching has
smaller overhead when switching contexts.
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Multitasking cont’d

Figure 4: Stack

- In multiple processing environments
each process executes the same code
but has its own memory and file resources.
- All threads can share
same set of open files, child processes.
- If one process is
blocked then no other process can execute
until the first process is unblocked.
- While one thread is blocked and waiting,
second thread in the same task can run.
- Multiple processes without using threads

use more resources.
- Multiple threaded processes use fewer resources.
- In multiple processes each process operates independently of the others.
- One thread can read, write or change another thread’s data.
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Local variables

Figure 5: Stack

Whenever
a program calls a subroutine by a CPU
instruction CALL, it saves the current
instruction pointer (IP) onto the stack.
It marks its position before it branches, so
it knows where to return after termination
of the subroutine. This saved address
on the stack is called a return address.

A high-level programming language like
C or C++ also puts local variables of the
subroutine on top of the stack. Thus, the

subroutine gets its own memory area on the stack where it can store its
own data. This principle is also the key of recursive routine calls because
every new call to the subroutine gets its own return address and its own
local variables on the stack.
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Local variables

Figure 6: Memory layout of a
process

Upon termination of the subroutine,
high-level languages first clean up the
stack by removing all local variables. After
that, the stack pointer (SP) again points
to the saved return address. At a RET
or RETURN instruction, the processor
reads the return address from stack,
jumps back to the former IP position,
and continues the original program flow.
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Local variables

Figure 7: Memory layout of a
process

When creating a member variable
(A field) or a static member (static field),
the address of memory of the variable
in the virtual address space (which
is translated to a global memory address
space) is shared between all threads that
are created within the scope or the class.

TLS (Thread
Local Storage)is a region in the heap that
can only be accessed by a specific thread.
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Sample problem - matrix multiplication

Multiply two matrices matA and matB, storing the result in matC .
Dimensions of the sources matrices are passed in dimxA,dimyA,dimxB and
dimyB variables.
Dimensions of the destination matrix is assumed to be dimyA ∗ dimxB

Figure 8: Matrix multiplication algorithm

Gene Soudlenkov (National eScience Infrastructure)High performance computations with multithreading March, 2014 14 / 57



Matrix multiplication

Matrix multiplication algorithm

1 Check the sizes of two matrices A (m × n) and B (t × u): if n = t
then we can multiply them otherwise no (in that order AB)

2 If they can be multiplied, then create a new matrix of size m by u

3 For each row in A and each column in B multiply and sum the
elements and the place the results in the rows and columns of the
result matrix AB

Matrix multiplication has complexity of O(n3). It means that every time
the dimension increases 10-fold, the time required will increase 1000-fold.
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Reference serial code

int multiply(int dimxA ,int dimyA ,int *matA ,int dimxB ,

int dimyB ,int *matB ,int *matC)

{

int i,j,k,val;

//run matrix multiplication loop

for(i=0;i<dimyA;i++)

{

//clean destination line

for(j=0;j<dimxB;j++)

{

val =0;

for(k=0;k<dimxA;k++)

val+=matA[i*dimxA+k]*matB[k*dimxB+j];

matC[i*dimxB+j]=val;

}

}

return 1;

}

Note
The sample code is straigtforward and simple. It does not in any way pretend to be the most
optimal implementation, like Strassen algorithm, for example.
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Reference serial code performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Serial code execution gives the following results

Dim Time, ms

100 1
300 36
500 195
1000 8617
3000 267337
5000 1409010

Table 1: Serial code performance.
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Native threads-based implementation

Use native threads to improve performance

Assume 12 cores machine

Changes require in the code

Keep the algorithm intact

Figure 9: Parallel matrix multiplication

Note

Higher-grade optimisation of matrix multiplication requires algorithm
re-design. It is advisable to take into account the nature of the matrices.
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Grid decomposition
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(b) Grid decomposition

The example above demonstrates grid decomposition for 4 threads.
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Native threads-based implementation

Require additional routine

Parallelise outermost loop only

Assign a subset of lines per thread

Need thread configuration structure

Simple implementation - no messaging support required

Threads will receive configuration data upon creation - no need to deliver
configuration data through external means (queues, messages, etc).

struct MatMult

{

int dimxA ,dimyA ,dimxB ,dimyB; // dimensions

int *matA ,*matB ,*matC; //src and dst matrices

int line_start ,line_end; // start and end lines

//for the thread

};
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Native threads-based implementation

#define THREADS_NUM 12

int multiply(int dimxA ,int dimyA ,int *matA ,

int dimxB ,int dimyB ,int *matB ,

int *matC)

{

//store thread handles

pthread_t threads[THREADS_NUM ];

// configuration structures per thread

struct MatMult config[THREADS_NUM ];

int count_per_thread; // number of lines per thread

int i;

// calculate number of lines per thread

count_per_thread=dimyA/THREADS_NUM;
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Native threads-based implementation

for(i=0;i<THREADS_NUM;i++)

{

config[i]. dimxA=dimxA;

config[i]. dimxB=dimxB;

config[i]. dimyA=dimyA;

config[i]. dimyB=dimyB;

config[i].matA=matA;

config[i].matB=matB;

config[i].matC=matC;

config[i]. line_start=i*count_per_thread;

config[i]. line_end=config[i]. line_start+

count_per_thread;

}

config[THREADS_NUM -1]. line_end +=

dimyA%THREADS_NUM;

for(i=0;i<THREADS_NUM;i++)

pthread_create (& threads[i],NULL ,

multiply_aux ,& config[i]);

for(i=0;i<THREADS_NUM;i++)

pthread_join(threads[i],NULL);

return 1;

}
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Native threads-based implementation

The actual working routine should:
Note: threads are created asynchronously, which means that
pthread create call will not block and wait until the thread function is
done.

Accept thread configuration for matrices

Work within the line limits
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Native threads-based implementation

void *multiply_aux(void *ptr)

{

struct MatMult *pv=( struct MatMult *)ptr;

int i,j,k,val;

//run matrix multiplication loop

for(i=pv->line_start;i<pv ->line_end;i++)

{

for(j=0;j<pv->dimxB;j++)

{

val =0;

for(k=0;k<pv->dimxA;k++)

val+=pv->matA[i*pv->dimxA+k]*

pv->matB[k*pv ->dimxB+j];

pv->matC[i*pv ->dimxB+j]=val;

}

}

return NULL;

}
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Native threads-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
Native threads-based code gives the following results

Dim Time - serial Time - native threads

100 1 1
300 36 8
500 195 45
1000 8617 696
3000 267337 23179
5000 1409010 126169

Table 2: Native threads-based performance.
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Figure 10: Pink lake of Hillier, Australia
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OpenMP

Industry standard

Supported by major compiler developers

Supproted for multiple languages

Multiplatform

Based on directives or pragmas

Spawns team of threads to handle parallel requests

Supports shared and thread-local variables

Supports conditional parallelisation

No need to change the code significantly
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OpenMP directives

Composed of a sentinel followed by the command and the clause:

C/C++ sentinel: #pragma omp
Fortran sentinel: !$OMP

Commands include:

parallel: forms a team of threads and starts parallel execution
for: parallelise loop automatically
sections: Defines non-iterative worksharing construct
single: specifies a single-thread block in a team
critical: restrict execution of a block to a single thread
barrier: specifies an explicit barrier at the point
atomic: ensures atomicall access to a specific storage
threadprivate: specifies thread local storage for the specified variables

Example

#pragma omp parallel for private(i,j) schedule(dynamic)
!$omp secions reduction(+:result)
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PARALLEL directive

Forms a team of threads
Team size is controlled by either

1 Environment variable OMP NUM THREADS
2 Explicitly set by function call omp set num threads()
3 By default - using the number of CPUs in the system

Can be conditioned with IF clause

Example

#pragma omp parallel

printf("Hello , world from thread %d\n",omp_get_thread_num ());

Output

Hello , world from thread 0

Hello , world from thread 2

Hello , world from thread 1

Hello , world from thread 3
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PARALLEL directive, continued

Can be combined with for command to provide automatic loop
parallelization

The iterations of the loop will be distributed dynamically in evenly
sized pieces

Threads will not synchronize upon completing their individual pieces
of work if NOWAIT is specified

Example

int N=10, result=0,i;

#pragma omp parallel for if (N>5) reduction (+: result)

for(i=0;i<N;i++) result +=i*5;
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PARALLEL directive, Data Scope Clauses

IF (scalar logical expression) - conditional parallel execution: check if
there is enough work to do?

DEFAULT (PRIVATE—SHARED—NONE) - establishes default
value for sharing attribute

REDUCATION(operator : variable) - variable is initialised with to
relevant value and at the end of the loop the value of the variable
processes through the reduction operator for each thread

SHARED(list) - declares list to be shared by tasks

PRIVATE(list) - declares list to be private to a task

FIRSTPRIVATE(list) - same as private, initialises each member of
the list with the value given

LASTPRIVATE(list) - same as private, leaves the value of each
member as it was before vacating the block

COPYIN(list) - copies the value of the master thread variables to the
thread variables of other threads
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Data scoping - lets re-iterate

Every variable has scope: shared or private

Scoping can be controlled with scoping clauses:

shared
private
firstprivate
lastprivate
reduction clause explicitly identifies a reduction variable as private

Scoping is one of the leading error sources in OpenMP

Unontended sharing of variables
Privatization of the variables that must be shared
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PARALLEL directive, Execution Control Clauses

SCHEDULE (type, chunk) - Describes how iterations of the loop are
divided among the threads in the team. The following policies
supported:

1 STATIC
2 DYNAMIC
3 GUIDED
4 RUNTIME
5 AUTO

ORDERED - ensures predictable order of threads scheduling

NOWAIT - If specified, then threads do not synchronize at the end
of the parallel loop.

COLLAPSE(scalar) - Specifies how many loops in a nested loop
should be collapsed into one large iteration space and divided
according to the schedule clause.
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REDUCTION clause

REDUCTION clause applies operation to the variable stated after all
threads are done

Variables listed are automatically declared private

Reduces synchronisation overhead

int factorial(int number)

{

int factor=1, i;

#pragma omp parallel for reduction (*: factor)

for(i=2;i<number;i++)

factor *=i;

return factor;

}
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REDUCTION clause

At the beginning of the paralle block a private copy is made of the
variable and pre-initilized to a certain value

At the end of the parallel block the private copy is atomically merged
into the shared variable using the defined operator
The private copy is actually just a new
local variable by the same name and
type, the original variable is not accessed to create the copy.
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SINGLE execution

Allows code to be executed serially in parallel
region
Any thread will run the code, the rest of the team will skip it and
wait until SINGLE block is done

NOWAIT attribute can be used to avoid waiting at the end of the
block

Example

#pragma omp parallel

{

printf("In parallel , all threads

#pragma omp single

    printf("Printed from only one thread\n");

    printf("In parallel again , all threads\n");

}

Gene Soudlenkov (National eScience Infrastructure)High performance computations with multithreading March, 2014 36 / 57



MASTER execution

Allows code to be executed serially in parallel
region by the master thread only
Only master thread run the code, the rest of the team will skip it
without waiting

Unless you use the threadprivate clause, the only important difference between single nowait and
master is that if you have multiple master blocks in a parallel section, you are guaranteed that
they are executed by the same thread every time, and hence, the values of private (thread-local)
variables are the same.

Example

#pragma omp parallel

{

printf("In parallel , all threads

#pragma omp master

    printf("Printed from only one thread\n");

    printf("In parallel again , all threads\n");

}
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FLUSH directive

Even when variables used by threads are supposed to be shared, the
compiler may take liberties and optimize them as register variables. This
can skew concurrent observations of the variable. The flush directive can
be used to ensure that the value observed in one thread is also the value
observed by other threads.
In the example, it is enforced that at the time either of a or b is accessed,
the other is also up-to-date.
You need the flush directive when you have writes to and reads
from the same data in different threads.

Example from the OpenMP specification

/* First thread */ /* Second thread */

b = 1; a = 1;

#pragma omp flush(a,b) #pragma omp flush(a,b)

if(a == 0) if(b == 0)

{ {

/* Critical section */ /* Critical section */

}
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Sections

SECTIONS directive is a non-iterative work-sharing construct

Each SECTION is executed once by a thread in the team

It is possible for a thread to execute more than one section if it is
quick enough and the implementation permits this

Figure 11: Sections execution
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Sections: Example

Example

#pragma omp parallel

{

printf("Parallel 1. Going from thread %d\n",

omp_get_thread_num ());

#pragma omp sections

{

printf("Entered into the sections , thread %d\n",

omp_get_thread_num ());

#pragma omp section

printf("Section 1. Going from thread %d\n",

omp_get_thread_num ());

#pragma omp section

printf("Section 2. Going from thread %d\n",

omp_get_thread_num ());

}

printf("Parallel 2. Going from thread %d\n",

omp_get_thread_num ());

}
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Sections: Example output

As the output suggests the only thread executing the sections was thread
3 - the rest of the threads skipped sections part.

Output

Parallel 1. Going from thread 3

Entered into the sections , thread 3

Section 1. Going from thread 3

Section 2. Going from thread 3

Parallel 1. Going from thread 2

Parallel 1. Going from thread 0

Parallel 1. Going from thread 1

Parallel 2. Going from thread 3

Parallel 2. Going from thread 0

Parallel 2. Going from thread 1

Parallel 2. Going from thread 2
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Synchronization in OpenMP

MASTER forces the block to be executed only by the master thread

CRITICAL(name) is used to serialize work in parallel block

if CRITICAL is named, all critical block with the same name are
serialized

ATOMIC is used to ensure that only a single thread will execute the
statement followed. The directive is not structured

BARRIER is used to force all threads in the team wait upon reaching
the barrier point. Barriers are costly. They should not be used inside
other synchronization blocks, such as CRITICAL, SINGLE,
SECTIONS or MASTER
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Sample problem - matrix multiplication with OpenMP

Multiply two matrices matA and matB, storing the result in matC .
Dimensions of the sources matrices are passed in dimxA,dimyA,dimxB and
dimyB variables.
Dimensions of the destination matrix is assumed to be dimyA ∗ dimxB

Figure 12: Matrix multiplication algorithm
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Reference OpenMP code

int multiply(int dimxA ,int dimyA ,int *matA ,int dimxB ,

int dimyB ,int *matB ,int *matC)

{

int i,j,k,val;

//run matrix multiplication loop

#pragma omp parallel for shared(matC) private(j,k,val)

for(i=0;i<dimyA;i++)

{

//clean destination line

for(j=0;j<dimxB;j++)

{

val =0;

for(k=0;k<dimxA;k++)

val+=matA[i*dimxA+k]*matB[k*dimxB+j];

matC[i*dimxB+j]=val;

}

}

return 1;

}
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OpenMP-based implementation performance

Benchmarking is based on multiplying 100,300,500,1000,3000 and
5000-large square matrices.
OpenMP-based code gives the following results

Dim Time - serial Time - native threads Time - OpenMP

100 1 1 1
300 36 8 8
500 195 45 43
1000 8617 696 656
3000 267337 23179 23101
5000 1409010 126169 125913

Table 3: OpenMP-based performance.
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Combined performance graph

Figure 13: Timing of matrix multiplication code
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Advanced loop parallelisation - nested loops

Problem - nested loops, can they be parallelised?

This code DOES not work!

#pragma omp parallel for

for(int i=0;i<10;i++)

#pragma omp parallel for

for(int j=0;j<10;j++)

...

OpenMP 3.0 loop nesting works

#pragma omp parallel for collapse (2)

for(int i=0;i<10;i++)

for(int j=0;j<10;j++)

...

Another alternative: enable nesting by calling omp set nested(1);
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Conclusions

+ Threads may increase performance proportional to the threads team
size

+ Native threads implementation requires significant rework of the code

+ OpenMP threads usage can be implemented with minimal code
changes

+ OpenMP threads usage is cross-platform and is easy to maintain
across various operating systems and compilers

- Threads can lead to a variety of conditional problems

- Multithreaded applications are harder to debug
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Figure 14: Bees
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Locking issues - race conditions

Multithreaded code suffers from the bugs related to multiple
readers/writers of the same object

If not protected, an object access may suffer from race condition
where multiple threads may try and change/retrieve status of the
same object at the same time

Serialization of access is required in order to protect against race
condition
Locking mechanisms differ from one OS to an-
other
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Locking issues - race conditions

Race conditions are difficult to detect and debug

Mathematical proof of software correction is not necessarily enough to
ensure the lack of race conditions

Example: Therac-25 disaster, 6 died

North American blackout of 2003
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Locking issues - deadlocks

A deadlock occurs when at least two tasks wait for each other and
each cannot resume until the other task proceeds

Often happens when code block requires locking of multiple mutexes
at once

Usually the order of mutexes to be locked must be preserved among
threads in order to avoid deadlocks
No matter how much time is allowed to pass,
this situation will never resolve itself
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Locking issues - OpenMP locking API

OpenMP provides rich, cross-platform API for locking support

OpenMP locks are wrappers around the platform-specific
implementations of mutex operations

OpenMP runtime library provides a lock type, omp lock t in its
include file omp.h

OpenMP API
omp init lock initializes the lock

omp destroy lock destroys the lock

omp set lock attempts to set the lock. If the lock is already set by another thread, it will
wait until the lock is no longer set, and then sets it

omp unset lock unsets the lock

omp test lock attempts to set the lock. If the lock is already set by another thread, it
returns 0; if it managed to set the lock, it returns 1.
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Locking issues - OpenMP locking API example

omp destroy lock can be called only for unlocked objects

Kernel transition inside the lock call adds up to the overhead

omp_lock_t writelock;

omp_init_lock (& writelock );

#pragma omp parallel for

for( i = 0; i < x; i++ )

{

omp_set_lock (& writelock );

// one thread at a time

a=b*c;

omp_unset_lock (& writelock );

}

omp_destroy_lock (& writelock );
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Scoped locks vs. CRITICAL vs. ATOMIC

It is allowed to leave the locked region with jumps (e.g. break,
continue, return), this is forbidden in regions protected by the
critical-directive

Scoped locking is exception safe, critical is not

All criticals wait for each other, with guard objects you can have as
many different locks as you like - named critical sections help a bit,
but name must be given at compile-time instead of at run-time like
for scoped locking

The most important difference between critical and atomic is that
atomic can protect only a single assignment and you can use it with
specific operators

Addition with critical section is 200 times more expensive than simple
addition, atomic addition is 25 times more expensive then simple
addition
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Environment variables

OpenMP uses a set of environment variables that can be modified to
ensure the best performance for the application.

OMP NUM THREADS: number, set the desired number of threads
in a team

OMP DYNAMIC: true or false, forces dynamic schedule type to be
used

OMP STACKSIZE: number optionally followed by unit specification
B, K, M or G, specifies the size of the stack for threads created by
OpenMP. If unit is not specified, kilobytes (K) is assumed
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Loadleveler and OpenMP

Loadleveler provides special considerations for OpenMP applications

#parallel threads=N reserves the required number of cores

OMP NUM THREADS variable is automatically set by Loadleveler
according to parallel threads value

Loadleveler job description example

#@account_no=uoa

#@class=default

#@group=nesi

#@resources=ConsumableMemory (100mb) ConsumableVirtualMemory (100mb)

#@wall_clock_limit =10:00

#@job_type=serial

#@parallel_threads =4

#@output = $(job_name ).$(jobid ).out

#@error = $(job_name ).$(jobid).err

#@queue

./ run_my_omp_app
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