
Comparing Adaptivity of Ants using NEAT and
rtNEAT

Teo Gelles & Mario Sanchez
Swarthmore College

Class of 2016

Abstract

Although individual ants have an extremely basic intelligence, and are completely incapable of surviving on their own, colonies
of ants can develop remarkably sophisticated and biologically successful behavior. This paper discusses a set of experiments which
attempt to simulate one of these behaviors, namely the ability of ants to place pheromones as a way of communication. These
experiments involved a variety of different environments, and tested two varieties of the genetic algorithm NEAT: the standard
offline version, and its online counterpart rtNEAT. Since the experimental environment did not seem to offer any benefit to
continuous learning, we had expected NEAT and rtNEAT to have roughly similar learning curves. However, our results directly
contradict this hypothesis, showing much more succesful learning with rtNEAT than with standard NEAT.

I. INTRODUCTION

A. Motivation

One of the many goals of the Artificial Intelligence commu-
nity is the development of realistic simulations for behavior
patterns of organisms, a field known as Artificial Life. The
general motivation behind this field is that by creating these
simulations, we will be more able to understand and predict the
real world, the potential applications of which are theoretically
unbounded and have recently started to manifest in such fields
as industrial design, security, telecommunications, and data
mining[5]. As can be expected, the most high-level goal of
being able to simulate all forms of life and all of its behaviors
is far out of the reach of any one experiment, so researchers
focus on more basic, simplified models to create and study.

In this experiment, we simulate some of the actions of a
standard colony of ants, using two slightly different learning
approaches. Our choice of ants as an organism to model is due
to the currently-accepted belief that ants exhibit fairly complex
behavior as a group while having only simple individual
capabilities[3]. In particular, although individual ants have
only the most rudimentary sense of direction and a mere
few seconds of memory, they are as collective groups able to
consistently travel significant distances in order to find food,
and return it to the nest. Their main tool in performing this
task is through their evolutionary development of pheromones,
scents which ants can drop that provide information regarding
the path they are travelling. Our simulation attempts, in various
ways, to develop this behavior in digital ants, using a few
different machine learning techniques.

In our simulations, we use two varieties of a machine-
learning paradigm called NeuroEvolution for Augmenting
Topologies (NEAT). NEAT is a genetic algorithm that uses
a cognitive model called a neural network to emulate the
brain activities of organisms. As a genetic algorithm, NEAT
maintains a parameter for every member of the population
called fitness, which is simply a measure of how well the

individual is performing. Normally, there is a set amount
of time that a “generation” of organisms is allowed to live
before being replaced, at which point NEAT selects individuals
with the highest fitness as those most likely to pass on their
own neural network to the next generation. This system is
known as offline learning. However, there is also a variant of
genetic algorithms in general, and NEAT itself, which do not
replace an entire generation at once but individual organisms
continuously as long as the experiment runs, which is known
as real-time, or online learning. This type of NEAT is called
real-time NEAT (rtNEAT). Our experiment tests how well a
population of ants learns to use their pheromones to navigate
a digital world using the standard NEAT vs. rtNEAT.

In some ways, the series of experiments described in this
paper can be seen as a continuation of the authors’ previous
work with simulations using rtNEAT. In that study[4], the
authors implemented a simulation of small prey “organisms”,
simulated as dots, that were equipped with rtNEAT and
attempted to learn to evade user-controlled predators, also
simulated as dots. The results were compared to those of a
standard genetic algorithm, one which did not make use of
several trademark qualities of NEAT. That study found that
the organisms controlled by rtNEAT learned much faster than
those of a standard genetic algorithm. However, rtNEAT’s
learning was so rapid, likely due to the goals of the experiment
being so simplified, that it would take only a few minutes
for the organisms to learn perfect evasion. This left open the
question of how well rtNEAT would be able to handle more
complex tasks, and also how its performance compared to
NEAT itself. The experiments of this paper aim to demonstrate
whether NEAT and rtNEAT can be used to learn optimal
behaviors in more complex environments, and to determine
which, if either, is more suitable.

B. Previous Research

Several papers have been published describing experiments
involving NEAT and rtNEAT, many of them written by the



creator of the algorithm himself, Kenneth O. Stanley. However,
a to our knowledge a direct comparison of NEAT and rtNEAT
has never been done, perhaps because the supposed applica-
tions of each algorithm are different enough so that testing
them together was never a priority. According to Stanley
[10], rtNEAT, and real-time learning in general, is optimal
for cases where the objective has substantial variability, in
which case the real-time algorithm has more opportunity to
change relative to the offline version. However, the paper is
much more unclear as to the disadvantages of rtNEAT, as in,
cases where rtNEAT would be expected to perform worse. We
believe that in a consistent environment like in our simulation,
the performance of the two algorithms should be roughly
similar.

Referring back to [10] again, in the experiments described
in that paper rtNEAT was implemented along with a combat
training simulating game called NERO. In NERO, participants
create a set of challenges and obstacle courses for non-
player controlled characters (NPCs) equipped with rtNEAT
to learn on. After training, the NPCs were tested against a
player-controlled team, and success was gauged holistically.
We note that in these experiments, rtNEAT was not tested
against another learning algorithm, unlike in our experiments.
Furthermore, we record our data quantitatively, and have more
definitive goals as opposed to the unknown potential abilities
of the NPCs.

NEAT itself has also been experimented with numerous
times by Stanley, with one set of tests discussed in [9]. In those
experiments, simulated robots “battled” each other within the
following environment: The robots begin with a set amount
of energy that decreases over time. Robots can pick up food
which restores some energy. If two robots hit each other, the
one with more energy wins, and get a boost to fitness. The
strategy each robot used was decided by a variant of NEAT,
with different core features removed. The results were strongly
supportive of the conclusion that NEAT requires all of its
principle features in order to operate optimally. However, like
the previous experiments described with rtNEAT and NERO,
the NEAT experiment did not test the fully featured NEAT
against rtNEAT, however it did share the quantitative spirit
of our paper. Our experiments are non-competitive, and in
many ways test the ability of NEAT and rtNEAT to create
cooperative strategies rather than the confrontational ones
of Stanley’s experiments. We are also not interested in the
specific features of NEAT and their utility, but rather how the
algorithm and its equivalent but real-time counterpart compare
in a task that would intuitively seem to offer no advantage to
either.

Of the many experiments summarized in [5] regarding
artificial life, ours has a fair number of similarities with some
and is widely distinct from the others. From a motivational
standpoint, all of those experiments had a direct, industry-
level application in mind with their development. Many of
them tested brand-new algorithms against previous standards,
with the intention of proving the superior performance of their
design over those of their rivals’. Interestingly, some of the

designs do seem to be inspired by ant colony behavior, such
as the Ant-Miner data mining algorithm created by Parpinelli
et al. [6]. But once again, no experiments seem to have
been interested in directly comparing an algorithm vs. a real-
time version of the algorithm. Also, we have had no hand
in designing NEAT, so we have no motivation to prove its
superiority in any respect.

II. EXPERIMENT DESCRIPTION

A. Experimental Background

1) Neural Networks: Artificial neural networks are one
of the main backbones of modern adaptive learning. As the
name may suggest, neural networks are a mathematical model
that is based off the neurons found in human brains. Like
biological neurons, artificial neural networks are composed
of small units, neurons, that are interconnected. Through
this interconnection, artificial neural networks are able to
approximate any mathematical function.

Mathematically, each neuron is a simple single-valued func-
tion. While there are many possibilities for what that function
could be, throughout our experiments we will be only using
the sigmoid function. This function is defined as

Sigmoid(x) = S(x) =
1

1 + e−x
.

A plot of this function can be seen in Figure 1

x

S(x)

2 4 6−2−4−6

Figure 1. Graph of the Sigmoid Function

While a single neuron does not give any significant compu-
tational power, their connection does. Neurons are connected
through weighted links between their inputs. That is, the output
of one neuron is weighted and then fed into the input of
another neuron. For a neuron that has multiple neurons feeding
into it, the input is the weighted summation of the outputs of
the previous neurons and the corresponding weights on the
links. A diagram showing this interconnection is shown in
Figure 2.

2



Neuron

Input 1
x1

Input 2
x2

...

Input n
xn

S

(
n∑
i

wixi

)

Figure 2. Connections of Neurons

While in general these neurons are allowed to connect in any
way, we only concern ourselves with layered recurrent neural
networks. Our neurons our found in three layers. The first layer
is the layer of input neurons. These neurons receive their input
from an external source (the input from the program). These
input neurons connect to the next layer. This layer is called the
hidden layer and it contains the hidden neurons. These neurons
are hidden because they do not directly come into contact with
the program. They simply serve as an intermediary between
layers. The last layer is the layer of output neurons. In this
layer, the neurons receive input from the hidden neurons and
the output is sent back to the program. In addition to this
structure, our neurons are recurrent. That is, they are allowed
to connect to themselves and to previous layers. A diagram of
this structure is shown in Figure 3

Input Hidden Output

In 1 Out 1

In 1 Out 2

In 1 Out 3

Figure 3. Structure of the Network

Neural networks serve as powerful approximation tools,
since by changing the weights, the neural network can change
the function that they apply to the inputs. As such, many
algorithms to change the weights exist. The two most pop-
ular methods are back-propagation and neuroevolution. While
back-propagation is extremely useful, it is not the focus of the
paper. For an introduction into back-propagation refer to any
text on neural networks. The second method, neuroevolution,
is described in the next section.

2) NeuroEvolution for Augmenting Topologies: Neuroevo-
lution is one of the most common learning methods for neural
networks. As the name suggests, this method is modelled
after Darwinian Evolution. Initially, there is a population of

neural networks all with random weights. Each neural network
is then tested against some metric to give it a score - the
fitness. This fitness depends on the neural network’s ability
to perform a task or to approximate some function. Then, a
new population is formed by selecting the fittest individuals
of the previous population and using them to create a new
population. This new population is created by recombining the
various individuals or by small mutations to the individuals.
This new population is then subject to the same test. By
repeating this process, individuals become fitter over time and
the corresponding networks become more able to approximate
the desired function. A diagram of this standard evolutionary
algorithm is shown in Figure 4.

Create
Pop

Measure
Fitness

Select
Parents

Create
New Pop

Recombine
Mutate

Figure 4. Standard Genetic Algorithm

However, this standard algorithm has many faults when
it comes to learning difficult tasks. For one, the topology
of the networks, that is the number of hidden layers and
the corresponding links between the neurons, remains fixed
throughout evolution. This means that the complexity of the
behavior remains constant. In addition, often the recombi-
nation of different networks takes two good networks and
creates a network that is worse than both of its parents. For
these reasons, researches searched for a new way to conduct
neuroevolution.

In 2002, Kenneth O. Stanley and Risto Miikkulainen devel-
oped a new neuroevolution algorithm known as NeuroEvolu-
tion for Augmenting Topologies (NEAT) [7]. This new algo-
rithm sought to fix the many flaws that are found in traditional
neuroevolution. As such, NEAT is based off the following
ideas: Innovation numbers, speciation, and complexification.

The most pressing issue with the old algorithm was its
inability to change the topology of the networks as time
progressed. The idea of allowing networks to change is not
a new idea. First, a mutation was added to the typical set
of evolutionary operations that allows the addition of new
networks or new links where none existed before. Through
this, a network is able to grow in its number of hidden
neurons throughout the evolution. However, there is a diffi-
culty with making this work. Once there are networks with
differing topologies, it is no longer a simple manner to take
two networks and combine them. The solution to this was
given by Kenneth in the form of innovation numbers. At the
initialization of the evolution, every network has the same
topology. As evolution progresses, they each increase in the
number of neurons and links. However, within the genetic code
(the genotype), an innovation number is used to mark the time

3



at which the new neuron or link was added. By recording the
information regarding these innovation numbers, the algorithm
is able to combine networks with different topologies.

As stated before, another of the issues regarding standard
neuroevolution methods is that networks which have adapted
to perform in different situations are allowed to recombine
to create poor networks. To solve this, a technique known
as speciation is used. The name is self-explanatory. The
individuals in the population are split in to different groups
called species. Members from different species are not allowed
to combine with members from a different species. In order to
test whether or not two members are from a different species,
their topology and weights are compared. If either of them
are too different, then they will not be allowed to mate. By
doing this, the issue is resolved. In addition to this, there is
a mechanism known as species protection that protects new
species. This is done through fitness sharing. That is, each
species is allocated a total fitness that is then shared within
the species. This ensures that new members from a new species
are able to survive long enough to grow to their potential.

The final main idea behind NEAT is complexification.
As stated before, the initial population is made of small
networks with a relatively small number of neurons. However,
as time progresses, the networks become more complicated
and grow in the size of hidden neurons. This is the idea of
complexification. It is useful because the search space is small
at the beginning. After optimizing in the small number of
dimensions, more dimensions are added to the search space.
Thus, the amount of the large search space that needs to be
considered drops dramatically. This leads to better behavior
more quickly.

3) Real Time NeuroEvolution for Augmenting Topologies:
When NEAT was first created, it was solely an offline learning
algorithm. However, in 2006, Kenneth introduced a real-time
version of his NEAT algorithm. This algorithm is aptly known
as rt-NEAT.

The difference between offline and realtime NEAT is in
the way that a new population is created. In realtime NEAT,
when the creating new population step occurs, instead of
replacing the entire population, only a few individuals are
replaced. Then, a few new individuals are created an added to
the population. In this way, the population is under constant
change, yet it never changes all at once.

In order to ensure that the new individuals will have time to
survive to gain fitness, there is age-protection. That is, before
a certain number of time steps, a new individual is protected
from being selected by the algorithm to die. Thus, by doing
this, the population is constantly getting better without being
replaced at once.

In our previous project, rt-NEAT gave many benefits over
offline genetic algorithms. The first benefit is that it gives a
feeling of continuity to the evolution. In many applications,
such as video games, this quality is an important one. In
addition, in scenarios where many individuals are co-evolving,
having continuity of evolution is less disruptive and sudden

than typical genetic algorithms.

4) Ant Biology: Biological ants have been studied widely
for their ability to achieve complex tasks when grouped
together. This is made more amazing by the fact that the
ants have a very basic intelligence. Thus, most of their
intelligence comes from their communication - the so called
swarm intelligence [3].

Ant colonies consist of many different specialized roles.
Two of these roles, the scout and the scavenger, are the main
focus of our research. The scout ants are the first to leave the
colony in search of food. Once outside the nest, the scout ants
move in more or less a random manner. Upon reaching food or
an enemy, the ant will return to its base while placing a scent
trail, a pheromone trail, on the ground. If the scout ant has
found food, the pheromone trail will lead another ants towards
the same food source. Similarly, if the scout ant has found
some danger, the warning pheromone will warn the other ants
of the colony. Thus, as the name states, scout ants are the ants
that find the food.

Once food has been found, the job of the scavengers begins.
The scavengers will follow the pheromone trail placed by the
scouts. Upon finding food, they will follow the trail back to
base while placing their own pheromone trail down. As more
food is gathered, the pheromone trail will increase in strength.
In turn, this will lead more ants to the food. As the food
source runs dry, the ants will stop leaving their pheromone
trail. Therefore, due to evaporation of the pheromones, the
trail will vanish when the food runs out.

This combination of roles allows the ant colony to efficiently
find and scavenge food from their surroundings. In addition
to finding food, these pheromones also allow the ant colony
to defend themselves from predators. This communication
is what gives ants the evolutionary advantage they need to
survive.

B. Experimental Design

In order to more comprehensively test the capabilities of
NEAT and rtNEAT, our tests consist of two different sorts
of experiments. The second type is a much more simplified
version of the first, and serves as a sort of control group to see
whether a more narrow set of behaviors than those necessary
for the first experiment are learnable.

1) General Simulation Properties: All experiments, regard-
less of their type, take place on a 1880x960 grid, each entry of
which corresponds to a pixel on screen. Ants on the grid take
up a single pixel, but are displayed graphically with a circle
of radius 5 pixels. The ants are spawned at random points
within a 200x200 rectangle, their “home”, near the bottom-
center of the screen. Along with the ants on the grid are five
food sources, each located about 650 pixels away from the
center of the home rectangle, at intervals of 37◦ starting from
15◦ above the x-axis, which works out to the distribution of
the food being symmetric around the home. The edges of the
screen are impassable walls, so all distances and appearances

4



are standard Euclidean. Other than those walls, however, no
other contact is recorded, so ants can overlap each other as well
as the food sources indiscriminately. Along with these objects
on the grid is the ant pheromone, which can take on four
possible “colors”: blue, red, green, and black. While different
color pheromone can be placed on each entry of the grid, only
the dominant color is displayed or matters for purposes of the
simulation. Ants are allowed to move, place pheromone, and
pick up food once per every time step. In total, each run of the
simulation is 180,000 time steps. If rtNEAT is used, five ants
are replaced every 100 time steps. If regular NEAT is used, the
entire population is replaced every 3000 time steps. In order
to prevent the ants from entering a movement trap, where due
to the discrete nature of the grid they would oscillate between
two spaces that each specify the other direction as optimal, the
ants are allowed to move in a continuous fashion, and only
when they place pheromone is their position interpreted as a
discrete location.

Each ant has two fitness values associated with it. One is
altered every time step, by the following methodology. If the
ant does not have food, it is rewarded dependent on its distance
to the nearest food source, by the following formula:

fitnesstowards food = 10e−distance/200 (1)

This results in between .5 and 10 fitness points for an ant
every time step. If an ant without food touches a food source,
it picks up food automatically and receives a substantial boost
to fitness:

fitnesspick up food = 10, 000 (2)

Once an ant obtains food, it is no longer rewarded for
its distance towards the nearest food source. Instead, it is
rewarded at an even greater scale dependent on its distance
towards the home base:

fitnesstowards home = 200e−distance/200 (3)

This results in between 10 and 200 fitness points for an ant
every time step. Finally, if an ant with food touches the home
base, its food is taken from it and an enormous boost to fitness
is received:

fitnessreturning food = 200, 000 (4)

However, although this fitness variable is recorded and up-
dated, the actual fitness used to determine an ant’s likelihood
to be chosen to reproduce is the above fitness averaged over
the ant’s lifespan

actual fitness =
fitness

number of time steps alive
(5)

This gives ants a motivation for moving and finding food,
rather than the otherwise acceptable strategy of standing still
and accumulating fitness points. In practice, averaging the
fitness basically caps it at around 200 points, allowing newer
ants the opportunity to match, and eventually overtake, the
fitness of the older if they display similar or better behavior.

2) Experiment Type 1: Full Learning: The first type of ex-
periment run is the more comprehensive. In these experiments,
two different types of ants are used, each with the ability
to place pheromone. One type represents the scavenger ants
as described earlier. Each of these ants has a neural network
which consists of 49 input neurons and 7 output neurons. The
input neurons take the amount of the dominant pheromone
at each grid entry within the 3x3 area surrounding the ant,
as well as 0’s for the non-dominant pheromone so that the
ants can tell which pheromone is dominant. This accounts for
36 of the input neurons. Another 9 input neurons are used
to identify the type of each grid location surrounding the ant,
namely whether the spot is a food, home, or wall location. This
represents the ant’s very basic sense of direction. Three input
neurons are given random inputs, so that ants do not behave
entirely deterministically when travelling across the largely
empty grid, and have a natural impulse to experiment and
explore. Finally, a single input neuron is a boolean determined
by whether or not the ant has food. Of the output neurons, two
are used to determine how far the ant will move horizontally
and how far the ant will move vertically, both of which can
go as far as 1 grid space. The remaining five output neurons
represent how much the ant wants to place of each of the
four pheromone colors, plus the possibility of placing no
pheromone. To decide, the maximum of these five neurons is
taken, and the corresponding pheromone is placed. For each
run of the simulation, 200 of these ants are in use at any given
time.

Along with the representations of scavenger ants, this exper-
iment uses scout ants. Unlike the scavenger ants, which move
based solely on the information in their immediate vicinity,
scout ants have hard-coded within them the locations of the
five food sources. Also unlike the scavenger ants’ complicated
neural networks, the scout ant neural networks consist of just
two input and two output neurons. The two inputs to the
network are the relative position of either the nearest food
source (if they do not have food) or the home territory (if
they do have food), and the two output neurons are, like the
scavenger ants, how far to move horizontally and how far to
move vertically. These ants place blue pheromone at every
time step, so adding in information to the network to control
pheromone usage is unnecessary.

Ants place pheromone in sets of 5 units at a time. But to
prevent the environment from being entirely cluttered with old
pheromone, pheromone is evaporated at a rate of 4 units every
400 time steps, which leaves about enough time for an ant to
get to a food source and back on the same trail at a leisurely
pace.

Typically, this experiment will start out looking like the
graphic shown in Figure 5. In that figure, the five green squares
represent food sources. The home base is the uncolored
rectangle near the bottom center of the graphic.

After the scout ants have learned to find and return food,
the experiment begins to look like the graphic in Figure 6.

3) Experiment Type 2: Hardcoded Paths: The first type of
experiment requires the scavenger ants learning both how to

5



Figure 5. Experiment 1 Start

Figure 6. Experiment 1 Middle

follow and how to place pheromone. To be comprehensive, this
second type of experiment tests only whether scavenger ants
can learn to follow pheromone. To accomplish this, scout ants
are removed, and the scavenger ants are not given the ability
to place pheromone. Instead, five pheromone trails have been
hardcoded into the simulation, each pointing from the center of
the home to one of the food sources. Fitness is still calculated
regularly, and the inputs to the scavenger ant neural networks
remain the same, but now the five outputs from the previous
experiment that had been used to determine which pheromone
the ants should place have been removed. Instead, only the two
outputs used to determine direction are used. The experiment
quickly begins to look like the graphic of Figure 7.

ive

Figure 7. Experiment 2

C. Hypothesis

For both our experiments, since the environment of the
simulation does not change significantly over time, the learn-
ing technique need not be continuous, so we expect that the
performance of NEAT and rtNEAT to be roughly the same.

III. RESULTS

To see all the figures with our results, refer to pages 9
(rtNEAT results) and 10 (NEAT results) of this paper. We had
twelve different variants of our experiments, each of which had
four different variables that we recorded: the average fitness of
the ants, the maximum fitness of the ants, the amount of food
the ants obtained, and the amount of food the ants returned.
The twelve variants of our experiment consist of the following:

• rtNEAT Experiments
– Experiments of Type 1

1) 0 Scouts, 4 Starting Hidden Neurons
2) 0 Scouts, 10 Starting Hidden Neurons
3) 50 Scouts, 4 Starting Hidden Neurons
4) 50 Scouts, 10 Starting Hidden Neurons

– Experiments of Type 2
5) 2 Hidden Neurons
6) 4 Hidden Neurons

• NEAT Experiments
– Experiments of Type 1

7) 0 Scouts, 4 Starting Hidden Neurons
8) 0 Scouts, 10 Starting Hidden Neurons
9) 50 Scouts, 4 Starting Hidden Neurons

10) 50 Scouts, 10 Starting Hidden Neurons
– Experiments of Type 2

11) 2 Hidden Neurons
12) 4 Hidden Neurons

We graph each type of experiment for each brain on the same
plot for each variable, and plotted both the food obtained
and food returned on the same graph, yielding 2 different
neural networks × 2 different experiment types × 3 different
plotted variables = 12 different graphs. Videos of these
experiments can also be found at https://www.youtube.com/
channel/UC6BHeoJBVHBpEOYsc6VqkVw.

As our results show, ants exhibited almost no learning
during the first type of experiment, with an almost linear rate
of food obtaining, implying basically random encounters with
the food squares, and very little food returning, implying no
ability of consistent path creating or following. In these types
of experiments, rtNEAT and NEAT performed very similarly,
as per our expectations.

However, the results of the second type of experiment are
very different. Ants controlled by rtNEAT displayed significant
learning, with an early exponential increase in the amount
of food obtained closely followed by food returned, implying
that ants were able to follow the hardcoded paths to the food
and back. We also see the benefit of starting with 2 hidden
neurons as opposed to 4, with the latter beating the former
by a wide margin with respect to all three measurements. But

6

https://www.youtube.com/channel/UC6BHeoJBVHBpEOYsc6VqkVw
https://www.youtube.com/channel/UC6BHeoJBVHBpEOYsc6VqkVw


with standard NEAT, no such learning took place, with a linear
increase in the amount of food obtained and minimal amount
of food returned, very similar to performance with the first
type of experiment. This implies, against our hypothesis, that
rtNEAT is more suitable for learning the task than regular
NEAT.

IV. CONCLUSION

A. Discussion

Originally, we believed that the difficulty of the task would
be so great that rtNEAT and NEAT would not perform too
well. In addition, we thought that rtNEAT and NEAT would
both perform equally. That is, online learning did not seem to
give any advantages in this domain. However, this was not the
case.

We have found that for the simpler task, where the path was
hardcoded, rtNEAT outperformed NEAT by a large margin.
There are many possible reasons for this difference. The main
one is that NEAT has many discontinuities in its evolution.
At one time there are many ants out, then at another, they
all vanish and get replaced by a new population. This might
add the difficulty of the task. Whereas, when using rtNEAT
the evolution is continuous. This allows newborn ants to take
advantage of the pheromone trails left by its predecessors.

When it comes to the difficult task, it is true that they
both perform equally as badly. Thus, we have found the
border at which the task becomes difficult. Learning to follow
pheromones is easily achieved by rtNEAT agents. However,
learning to place pheromone trails for other is the difficult
task. This communication between ants is the difficult task.

B. Future Work

We have many ideas for the improvement of the project.
First, we believe that using a more powerful neuroevolutionary
algorithm such as hyperNEAT or Evolving-Substrate hyper-
NEAT will achieve higher results. These algorithms utilizes a
network known as a Compositional Pattern Producing Network
(CPPN), which is known for its high level of symmetry, to
generate a symmetric neural network. This would be useful
for two reasons. One, the high symmetry will be beneficial for
this project since the behavior we seek is symmetrical. That
is, when ants are in similar situations, they should perform
similarly. Second, CPPN based neural networks allow for a
large input size and output size. Due to our large number of
inputs, these networks will learn better when the CPPNs evolve
insteadimprove our results of the neural networks [12].

Secondly, currently, the ants only have a sight radius of one
pixel around them. Increasing the size of this sight radius will
allow our ants to see the trails more easily. It is possible that
their sight radius is so small that they quickly lose track of the
trails due to the randomness. Since they are completely lost
without the trails, this leads to a lot of confused ants.

Thirdly, biological ants have a larger memory than our
artificial ants. This might give them the ability to return to
the nest more effectively. The problem is that we would need
to use a new type of learning structure which has a longer

memory than neural network. However, finding this should
improve our results greatly.

C. Acknowledgements

We would like to thank our professor Lisa Meeden for
teaching us everything we know about adaptive robotics and
artificial intelligence, Kenneth O. Stanley and Risto Miiku-
lainen for their NEAT and rt-NEAT implementation, and our
classmates for being supportive of our work.

REFERENCES

[1] Adrian Agogino, Kenneth Stanley, Risto Miikulainen, Online Interactive
Neuro-Evolution. Neural Processing Letters, 1999.

[2] Mark A. Bedau, Artificial Life. Handbook of the Philosophy of Science,
Volume 3: Philosophy of Biology. Elsevier BV, 2007.

[3] Eric Bonabeau, Guy Theraulaz, Marco Dorigo, Swarm Intelligence: From
Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences
of Complexity. Oxford University Press, 1st Edition, 1999.

[4] Teo Gelles, Mario Sanchez, Comparing Approaches to Online NeuroEvo-
lution. Swarthmore College, 2014.

[5] Kyung-Joong Kim, Sung-Bae Cho, A Comprehensive Overview of the
Applications of Artificial Life. Artificial Life 12. Massachusetts Institute
of Technology, 2006.

[6] R.S. Parpinelli, H.S. Lopes, A.A. Freitas, Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation,
2002.

[7] Kenneth O. Stanley, Risto Miikkulainen, Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation. Mas-
sachusetts Institute of Technology, 2002.

[8] Kenneth O. Stanley, Risto Miikkulainen, A Taxonomy for Artificial
Embryogeny. Artificial Life Journal, 2003.

[9] Kenneth O. Stanley, Risto Miikkulainen, Competitive Coevolution through
Evolutionary Complexification. Journal of Artificial Intelligence Research
21. AI Access Foundation and Morgan Kaufmann Publishers, 2004.

[10] Kenneth O. Stanley, Bobby D. Bryant, Risto Miikulainen, Evolving
Neural Network Agents in the NERO Video Game. Proceedings of the
IEEE 2005 Symposium on Computational Intelligence and Games, 2005.

[11] Kenneth O. Stanley, Bobby D. Bryant, Igor Karpov, Risto Miikkulainen,
Real-Time Evolution of Neural Networks in the NERO Video Game.
The Proceedings of the Twenty-First National Conference on Artificial
Intelligence, 2006.

[12] Kenneth O. Stanley, Risi, Sebastian, Lehman, John, Evolving the Place-
ment and Density of Neurons in the HyperNEAT Substrate. Proceedings
of the Genetic and Evolutionary Computation Conference, 2012

7



Figure 8. Average Fitness for rtNEAT Hardcoded

Figure 9. Maximum Fitness for rtNEAT Hardcoded

Figure 10. Food Gathering for rtNEAT Hardcoded

Figure 11. Average Fitness for rtNEAT

Figure 12. Maximum Fitness for rtNEAT

Figure 13. Food Gathering for rtNEAT

8



Figure 14. Average Fitness for NEAT Hardcoded

Figure 15. Maximum Fitness for NEAT Hardcoded

Figure 16. Food Gathering for NEAT Hardcoded

Figure 17. Average Fitness for NEAT

Figure 18. Maximum Fitness for NEAT

Figure 19. Food Gathering for NEAT

9


	Introduction
	Motivation
	Previous Research

	Experiment Description
	Experimental Background
	Neural Networks
	NeuroEvolution for Augmenting Topologies
	Real Time NeuroEvolution for Augmenting Topologies
	Ant Biology

	Experimental Design
	General Simulation Properties
	Experiment Type 1: Full Learning
	Experiment Type 2: Hardcoded Paths

	Hypothesis

	Results
	Conclusion
	Discussion
	Future Work
	Acknowledgements

	References

