
Clean more like
I wanna clill myself

A guide to programming in Clean

without the suicidal tendencies.

[Contents]
click on it

Authors: Melle P. Starke & Crippling D. Pression

1617 Functional Programming for Artificial Intelligence Students
(NWI-IBC015-2016-KW3-V)

Radboud University, Netherlands
Faculty of Social Sciences

Artificial Intelligence

27 March 2017

1

”SWEET JEZUS WHY!?”

If you’re reading this, chances are that either your arms are suffering from

anemia from waiting for the TA’s to finish helping the 20 people in the room,

or you’re trying to program in Clean without any TA’s whatsoever, and you

just wanna end it all. Fret not! This document serves as an encyclopedia for

basic explanations of clean code and datatypes, helpful links and forbidden

coding secrets whose names none dare speak.

Contents

1 Things Everyone Should Know 3

2 Syntax 4
2.1 Differences Compared to Java . 4
2.2 Operators . 4

3 Datatypes 5
3.1 Basic Types . 5
3.2 Algebraic Type . 5
3.3 Data Structures . 6

3.3.1 Tuples . 6
3.3.2 Record Types . 6
3.3.3 Lists . 7

3.4 Overloading . 9

4 Functions 11
4.1 Recursion . 12

4.1.1 For-loop in Clean . 12
4.2 Local Definitions . 12
4.3 λ - Abstractions . 12

4.3.1 Accumulators . 13
4.4 The If-Operator . 14
4.5 Higher Order Functions . 14

4.5.1 Currying . 16
4.6 foldr and foldl . 16

5 Tips, Tricks & Miscellaneous 18
5.1 Program Reasoning . 18

5.1.1 Induction . 18
5.1.2 Applicative vs. Normal Order 19

5.2 Programming & Exam Tips . 20
5.2.1 Writing a Function . 20
5.2.2 Determining a Function’s Output 21

5.3 Error Message Comprehension 22
5.4 Troubleshooting . 22
5.5 Secret StdEnv Commands . 22
5.6 Helpful Links . 22

2

1 Things Everyone Should Know

Clean can be quite confusing and illogical, so here’s some tips on how to get
around this dumpster fire:

• In order to work on a project, the .prj file, the .icl file (this is where
you’ll be coding in) and the .dlc file need to be accessible by clean.

• When wanting to run an .icl file you first need to load the .prj file.

• You can only have one .prj file open at a time, but you can have
multiple .icl files open.

• The .icl file can be loaded by opening the .prj file and double-
clicking it in the light brown coloured project window.

• You can open de .dcl file by pressing Ctrl + / (also works the other
way around).

• If you don’t know what a certain type or function does, you can
look it up by Ctrl + double-clicking it.

• If you disable a function in the .icl file by commenting it out (”//”),
you might need to do the same thing in the .dcl file.

• You can comment multiple lines by putting ”/*” at the top and ”*/”
at the bottom.

• Disable ”info” in the pink ”Errors & Warnings” window. It’ll
only scare you.

• Clean’s Ctrl+Z command initially only stores one change at a
time. But apparently there is a way to fix it. If you do delete your entire
code and can’t get it back, just load the .icl file again, there’s no autosave.

• You can add line numbers by going to Defaults → Window Settings
→ Editor Settings → Show LineNrs.

• There’s a lot of helpful commands in Clean’s standard environ-
ment (StdEnv). Seriously, if you’re stuck, check the StdEnv section in
Functional Programming in Clean first (see Helpful Links).

• You can close the .exe file by pressing any key. Keeping it open
will prevent you from running the code.

• In clean, :: is always used to assign types, and = is always used
to assign values.

• If you can’t find something in this guide look for it in Helpful Links
or just Google the Haskell code, it has really similar syntax.

3

2 Syntax

2.1 Differences Compared to Java

Clean is a functional programming language. This means it needs to execute
code in ”one line”. Code such as

if(raining){
getCoat(waterProof);

getUmbrella();

}

won’t work. You cannot group commands together. Because of this, you also
cannot easily save some of your values, then come up with the next step, it all
needs to be done in one step.

Clean does not have while-loops or for-loops. Instead, you use recursion when
you need to loop something. It also does not show syntax errors in real-time,
you have to bring it up to date (Ctrl+U) in order to see the errors. And whereas
Java functions can only return a single value, Clean functions can return mul-
tiple, if written as Tuples. In Clean, parameters are passed to functions with
spaces. If a function needs 2 arguments, it’s just gonna look for the next 2 things
separated by spaces. But you can group things together by using parentheses.
In Clean, parentheses are used to group things together, rather than to pass
parameters. Which is more like a math kind of approach.

2.2 Operators

Clean operators are rather similar to Java operators, but since there are quite
a few differences, here’s a list of ’em. Any operator that isn’t in this list is just
the same as in Java.

Operator Output Meaning

zero Assign zero value of datatype

one Assign one value of datatype

x +++ y String "add string x to string y"

x ++ y List "add list x to list y

x^y Int/Real "x to the power y"
∼x Int/Real "switch sign of x" (+ / -)

xs % (x,y) String/List slice from index x to index y of xs

x rem y Int/Real modulo (remainder of a division)

Note: zero and one assign a value to a certain type and can be used on all
basic types. zero :: Int = 0, for example. And zero :: Real = 0.0.

4

3 Datatypes

3.1 Basic Types

Clean does not have all the same basic datatypes as Java. So here’s a list:

Name Meaning zero value

Int Whole Number 0

Real Decimal Number 0.0

Bool Boolean

Char Character ’’

String String ""

a Any Type

NOTE: a is used in function input & output declaration, and can be any letter.
If you use different letters in your function definition, it means that they need
to be different types.

3.2 Algebraic Type

An algebraic type is simply an entirely new type, with a certain amount of pos-
sible values (so not a data structure like tuples or record types). If you know
what an enumeration is in Java, it’s basically that. Every basic type in Clean
is an algebraic type. The definition of Bool, for example, looks like this:

:: Bool = True | False

With the possible values (here known as data constructors) separated by guards.

If you make a new algebraic type, you can of course use it in your code:

:: Day = Mon Tue | Wed | Thu | Fri | Sat | Sun

isWeekend :: Day -> Bool

isWeekend Sat = True

isWeekend Sub = True

isWeekend = False

This also means that Sat :: Day.

Apart from being separate values for Day, they’re nothing more. They’re not
linked to their positions and so cannot be called with a number. Day is just a
new type that can have 7 separate values. If you do want to link their values
to certain positions, just make a list and put all the values in there in a certain
order, then use hd, tl and [x:xs] to go through the elements.

Also, any value can only be of one type. Which means that :: Weekend = Sat | Sun

and :: Dice = 1 | 2 | 3 | 4 | 5 | 6 will result in an error. Also for some
reason, values of a new algebraic type need to begin with a capital letter.

5

3.3 Data Structures

3.3.1 Tuples

A tuple is a type that consist of multiple types. There’s different kinds of tuples,
like a double: (Rain,Sun) and a triple: (1,7,3). Note that singles don’t exist, a
(7) is just read as an Int.

The types within a tuple can be anything (even another tuple) and can be dif-
ferent from each other. For example, (("Rain","Sun"),1,’k’,Contains) is a
valid quadruple, with type ((String, String), Int, Char, (Char String -> Bool)),
in that order.

Tuples can be used to make a function have multiple outputs by just writ-
ing the output as a tuple. Ex:

toDouble :: a a -> (a,a)

toDouble x y = (x,y)

NOTE: The order of the elements in a tuple is highly important. Each tuple
with a certain order and amount of types is a distinct type of its own.

Defining a new tuple in Clean looks like this:

Tuple1 :: ((String,String),Int,Char)

Tuple2 :: (Bool,Real,Char String->Bool)

NOTE: Tuples don’t always have to be defined. Start = (1,7,3) is perfectly
fine. But sometimes it can be helpful to define a tuple. And when
writing a function definition that uses a tuple it’s of course necessary
to define the type of the tuple.

3.3.2 Record Types

A record type is a type consisting of multiple types. Record types can contain
different sorts of types, much like Tuples. But unlike tuples, the order of the
elements is irrelevant (even when defining and constructing the record type).
This is because you name each element (a bit like object oriented programming
in Java):

:: Person = { name :: String :: signifies
new type
:: signifies
new type, birthdate :: (Int,Int,Int)

”name ::
type”, sep-
arated by
commas

”name ::
type”, sep-
arated by
commas

, parents :: (Person,Person)

}

} signifies
record type
} signifies
record type

NOTE: This can be written in one line as well, but this way comments look
better (And for some reason elements of a record type need to begin
with a lower case letter).

This is only the definition of the new record type Person. It does not con-
tain any values yet. In order to make a new Person, you have to give it a name

6

and assign values to it:

Bert :: Person define Bert
as type Per-
son

define Bert
as type Per-
son

Bert = { name = Bert

, parents = (Jochem,Greta)

notice sim-
ilar struc-
ture. But
with = in-
stead of ::

notice sim-
ilar struc-
ture. But
with = in-
stead of ::

, birthdate = (30,2,1989)

}

Getting Record Type Values

When wanting an element of a record type, you generally use dots (much like
in Java when you want a value or function of an object).

:: Birthdate = {day :: Int, month :: Int, year :: Int}

getYear :: Birthdate -> Int

getYear x = x.year

The above function returns the element year of the record type Birthdate. As
for an example:

CuriousBetsy’s :: Birthdate

CuriousBetsy’s = {Day = 2, month = 2, year = 1984}
Start = getYear CuriousBetsy’s

This function will have as output 1984.

Record types can be passed in 2 ways. with a dot, or with curly brackets.
The function getYear might just as well have been getYear {year} = year.
In the latter case you don’t need to pass all the elements, just the ones you
need. If you do need more you can separate them with commas.

3.3.3 Lists

Lists, like tuples, are data structures with elements on certain positions. But
unlike tuples, a list can contain zero or more elements and can only contain
elements of the same type.

There are a few ways to write the contents of a list:

canonical: [1:[2:[3:[]]]]

shorthand canonical [1:2:3[]]

plain [1,2,3]

enumeration [1..3]

The last one is more of a way to make a list. This particular one creates a list
of all numbers between and including 1 and 3, with intervals of 1. So: [1,2,3].
You can change the interval of an enumeration by specifying the 2nd element.
It’ll enumerate all numbers between and including the 1st and last number, with

7

intervals of the 2nd number minus the 1st. So [1,3..9] = [1,3,5,7,9]. If
the last number is not in the list, it’ll go up to the last included element before
that. So [1,3..10] = [1,3,5,7,9]. And infinite lists are also possible: [1..].

There’s a few symbols that you can use for lists in pattern definitions:

Symbol Example Meaning

: [x:xs] splits head (1st element (x))

from tail (the rest (xs))

, [x,y,z:xs] "these consecutive elements"

[x:] "I don’t care what this is"

[] [x:[]] empty list

This also means that a list with one element can be written as [x:[]]. Also
note that in the case of [x:xs] and [x:], both tails can be empty.

Subsetting a List

Apparently there’s functions for lists that you can use to get specific elements
or a subset, who’d’ve thought.

Function/Operator Meaning

!! returns the n’th element from xs (starts at 0)

take n xs returns the first n amount of elements from xs

drop n xs returns xs without the last n amount of elements

% xs (x,y) returns a "slice" of xs, from index x to y

List Comprehensions

I’m afraid list comprehensions won’t help you comprehend lists. They’re just
another way to format lists: they’re a way to quickly apply simple recursive
functions to all elements in a list:

squareOdds :: [Int] -> [Int]

squareOdds xs = [x*x \\ x <- xs | isOdd x] (function on)
element(s)
(function on)
element(s)

where there
elements are
from

where there
elements are
from

only ex-
ecuted if this
is True

only ex-
ecuted if this
is True

This function will produce a list of all elements from xs squared (x*x), but only
if isOdd x. List comprehensions consist of 2 to 3 parts:

1. Indication of what you want to do with the elements of the list(s).
x*x

2. Indication of where the arguments in part 1 are from (called ”generators”).
\\ x <- xs

3. (optional) Makes sure to only include the current element(s) if what comes
after the”|” is True.

| isOdd x

When applying list comprehensions to multiple lists, there’s 2 different ways to

8

combine the elements: nested and parallel (i.e. pairwise).

[(x,y) \\ x <- [1,2,3], y <- [a,b,c]]

This comprehension makes a list of tuples: [(Int,Char)]. And utilizes a ”,”.
Comma’s are used for nested generators, meaning that it’ll loop through all
possible combinations and produce the list
[(1,a),(1,b),(1,c),(2,a),(2,b),(2,c),(3,a),(3,b),(3,c)].

[(x,y) \\ x <- [1,2,3] & y <- [a,b,c]]

This comprehension makes a list of the same type, but utilizes a &. This means
that it only executes part one for all elements of the same index, i.e. pairwise
combinations. This also means that if one list is longer than the other, the
length of the list it produces is the same as that of the smallest list (which
also means that the usage of infinite lists is perfectly fine). This comprehension
produces the list [(1,a),(2,b),(3,c)]

3.4 Overloading

Overloading is the act of defining operators for a new type, whether it’s a tuple,
record type or algebraic type. But because it’s generally done in 1 line (which
I’m not gonna do) the structure can be confusing.

instance + (a,b) | + a & + b instance
you’re de-
fining (”+”
for doubles)

instance
you’re de-
fining (”+”
for doubles)

given that
”+” works
for the ele-
ments

given that
”+” works
for the ele-
ments

where

+ (x,y) (v,w)= (x+v, y+w)

passing of
operator and
necessary
arguments,
done with a
pattern

passing of
operator and
necessary
arguments,
done with a
pattern

output as a
double
output as a
double

The above code defines the instance for adding 2 doubles (see Tuples). This
is done by adding both elements of the doubles with each other, according to
this instance. You might recognize the where command from Local Definitions.
That’s because a part of an instance definition is just a local definition, where
you pass the operator and the necessary number of types (in this case 2 doubles)
for using the operator.

Overloading syntax in depth:

1. Instance keyword, then operator and type for which you want to define
the operator.

instance + (a,b)

2. Requirements for being able to execute this operator for this type.
| + a & + b

3. Keyword for local definition.
where

4. Passing of operator and necessary types for executing this operator.
+ (x,y) (v,w)

9

5. Output of the function.
= (x+v, y+w)

Overloading a record type

When defining operators for a new record type that contains general types (like
”a”, ”b”, etc.), there’s some extra stuff that you have to do:

:: BadHombres a b = {Mexico :: a, China :: b}

instance + (BadHombres a b) | + a & + b

where

+ h1 h2 = {Mexico = h1.Mexico + h2.Mexico,

China = h1.China + h2.China}

You might’ve noticed that the definition of BadHombres has a different syntax
than the example in Record Types. This is because the the requirements for
executing the function (| + a & + b) need to be able to access the types in the
record type.

If you have an already defined type (whether it’s a basic type, algebraic type
or data structure), you don’t need to pass the type. If you always use the same
types for BadHombres, for example 2 Strings, you can just write:

:: BadHombres = {Mexico :: String, China :: String}

instance + BadHombres | + String

(...)

Also note that if you have a general type in your record type, like in BadHombres a b :: {...},
you also need to specify the types whenever you make a new BadHombres. So
like:

CrookedHillary :: BadHombres String String

CrookedHillary = {Mexico = "Rapists", China = "TradeWar"}

Keep in mind that you don’t need to define the type of CrookedHillary, since
Mexico and China together always form the type BadHombres. So just the 2nd
line is enough.

10

4 Functions

In a way, a function is a type as well. Just one that requires one or more ar-
guments (which also means you can pass a function as an argument, cause it’s
technically a type, but we’ll get to that in Higher Order Functions).

Also note that for a function to work, its types don’t always need to be defined,
but defining types narrows the scope of a function. For example, when you have
a function without type definitions that multiplies two arguments, you’d better
hope no one is gonna try to pass characters or strings to the function. Therefore
it’s generally safer (and usually required) to define the types of a function.

Functions in clean have the following basic format:

Contains :: Char String -> Bool | hd String & tl String input and
output types
input and
output types

given that
functions hd
and tl work
for String

given that
functions hd
and tl work
for String

Contains c "" = False

’if empty
string’. you
can have
separate
functions
for different
inputs

’if empty
string’. you
can have
separate
functions
for different
inputs

Contains c s

| c == hd s = True

if-statement.
Expects
boolean

if-statement.
Expects
boolean

| otherwise = Contains c tl(s)

single = as-
signs value
to function

single = as-
signs value
to function

Clean functions can be divided into 5 parts, with part 1, 2 and 4 being optional,
depending on the situation:

1. Name and type definition.

Contains :: Char String -> Bool

2. Requirements for being able to execute the function: ”Given that you
know how to...”. Use & if multiple requirements.

| hd(String) tl(String)

3. Cases for certain inputs. (called ”patterns”)

Contains c ""

Contains c s

4. Logical Condition(s). (preceded by ”guards”)

| c == hd s

| otherwise

5. Assigning a value to the function.

= True

= Contains tl(s)

Clean’s ”single line programming” approach makes it so that you often need
multiple functions for a single exercise. If you get stuck and don’t know how to
write the function, see Writing a Function.

11

4.1 Recursion

Recursion is the act of making a function call itself with different arguments/inputs.
In clean, recursion is used a lot, mainly because it does not have loops.

When writing a recursive function, ALWAYS include the termination case. For
example: Contains c "" = False, then write the code for when the termin-
ation case is false. Also make sure that this code will eventually reach the
termination case.

4.1.1 For-loop in Clean

(The following is more like an example of a Clean function, rather than actual
study material)

Clean for-loops use Local Definitions to iterate a command a certain number of
times. The hard part here is to figure out what should be done in the case of
i > j because it still needs to be executed in one line of code. This is the basic
structure though.

ForLoop :: Int (...) -> a input & out-
put may
vary

input & out-
put may
vary

ForLoop i (...) = SubLoop i 0 (...)

where

SubLoop i j (...) local defini-
tion
local defini-
tion| i > j = ...SubLoop i (j+1) (...)

also variesalso varies
| otherwise = (...)

4.2 Local Definitions

Clean’s functional nature requires you to use a lot of separate functions. Luck-
ily, you can just define them within the function you need them in, though the
structure can be confusing:

Triangle :: Int -> String

Triangle n = SubTriangle n 0 actual values
passed to
SubTriangle

actual values
passed to
SubTriangle

where

keyword for
local def.
keyword for
local def.

SubTriangle n m

definition of
SubTriangle
with para-
meters

definition of
SubTriangle
with para-
meters

| n >= 0 = space (n-1) +++ line (1+2*(m-n)) +++ "\n"

+++ SubTriangle (n-1) m

Note that when defining a local definition, you don’t need to specify the types
of the parameters.

Local definitions can access any parameter in the function they’re in, but not
the other way around. Which is similar to the way that brackets work in Java.

4.3 λ - Abstractions

Clean gets scared when it sees multiple lines, so on top of local definitions, it
also supports λ-abstractions. Like local definitions, they’re functions used loc-

12

ally, only without a name and signified with a \.

doubleList :: [Int] -> [Int]

doubleList xs = map subdouble xs

where

subdouble x = x * 2

doubleList :: [Int] -> [Int]

doubleList xs = map (\x = x * 2) xs

Both functions double every element in an Int list (kudos to Matthijs), but the
latter uses λ-abstraction. Within the parentheses and after a \, it just behaves
as a regular function, with the arguments on the left hand side, and the output
on the right hand side. Also, you cannot use guards in a λ-abstraction, nor can
it call itself. So you’ll have to use The If-Operator and Accumulators.

4.3.1 Accumulators

UPDATE: It’s part of the exam after all.

Accumulators are mainly used in λ-abstractions as limited way of making them
recursive. This is because a λ-abstraction does not have a name and therefore
cannot call itself. It can instead use an accumulator, which stores the previous
outcome of the function. Please note that there’s only a single slide that covers
accumulators and personally I can’t make chocolate of it.

1.) sumList xs = foldl (+) 0 xs

2.) sumList xs = foldl (\x acc = acc + x) 0 xs

3.) sumList xs = subSum 0 xs

where

subSum acc [] = acc

subSum acc [x:xs] = subSum (acc + x) xs

Start = sumList [1,2,3]

(For more info on foldl see foldr and foldl)

The above functions all add every element of a list to each other, but the last
2 use accumulators. However, it looks like function 3 might have just used any
other name instead of acc and still work the exact same, so I’m not sure to
what extent it’s actually an accumulator.

To me, using an accumulator in a λ-abstraction makes the most sense. Since
you can only pass it known arguments, the code-word acc must (in my logic)
automatically indicate an accumulator. As opposed to function 3 where it can
be any other word or letter. Plus, as I’ve said before, it can help to make up
for that fact that a λ-abstraction cannot call itself.

13

So let’s take function 2 as our example: the initial value of an accumulator
is always zero, which means it can also be used for any other data type that
supports that value, not just numbers. Anyways, foldl is executed as long as
it gets an argument (in this case x), so we move to the first element of the list,
1, and execute the function: x + acc = 1 + 0 = 1. This value is then stored
in the accumulator, since that was the last output of the λ-abstraction. Next,
foldl moves on to the 2nd element: x + acc = 2 + 1 = 3. This is then stored
in the accumulator again, and the next and last element of the list is passed:
x + acc = 3 + 3 = 6. At this point foldl runs out of arguments and outputs
the last computed value of the λ-abstraction (or the accumulator, since it stores
the last output anyways).

The weird thing between function 1 and 2 is that the accumulator in 2 doesn’t
seem to even use the 0 that’s passed to foldl, whereas in function 1 it is used.
This is more noticeable when using a similar structure to calculate the length of
a list. Also, this has probably more to do with foldl than with the accumulator,
but keep it in mind.

4.4 The If-Operator

You can use Clean’s if-operator as an alternative for guards. Which can be
helpful in λ-abstractions because you can’t use guards there.

if(cold tomorrow) wearCoat wearShorts booleanboolean

if Trueif True

if Falseif False

The if() function takes one boolean, then executes the first argument if True,
and the second argument if False. This seems limited, but remember you can
put something in parentheses if you want it to be regarded as one argument.
This includes another if-statement, resulting in an ”if, else if” situation.

4.5 Higher Order Functions

Because functions are technically types too, they can also be used as arguments.
These kinds of functions are called ”higher order functions”. Though dissecting
higher order functions can be confusing:

f1 a b c = a c (b c)

This is an example of a higher order function without type definitions. At first
glance, it seems like the function outputs two arguments and one tuple that’s
missing a comma. Which shouldn’t be possible. And it isn’t: some of these
arguments are functions.

To figure out the structure of these functions, you have to look at the right
hand side of the = sign, from which you can concludee a few things:

1. a is a function, since more arguments follow.

2. c is not a function, since (within the parentheses) no arguments follow.
Also, c cannot be a function with b and c as arguments, since that means

14

c is a function with 2 arguments, and no arguments at the same time.

3. b is a function, since (within the parentheses) one argument follows.

This means that a is the main function, with type t t -> t, since it takes two
arguments and returns one. b has type t -> t and c has type t. Meaning that
the types of function f1 are:

f1 :: (a a -> a) (a -> a) a -> a The type of
the output is
whatever is
after the last
”->”

The type of
the output is
whatever is
after the last
”->”

f1 a b c = a c (b c)

As you can see, when defining a type as a function, you need to use parentheses
”()”. This also holds when you define one function to be another function en-
tirely:

f2 :: a -> a

f2 x = x

f3 :: (a -> a)

f3 = f2

Tips for Structure of Higher Order Functions

Look at the right hand and left hand side of the function and use logic to
determine which arguments are functions and which are arguments. Then de-
termine how many arguments each function takes and, if needs be, the specific
type of their input and output. Some tips:

• Look at the arguments in the pattern, and define them one by one. If it
is a function, use parentheses.

• Look at what arguments need to be put together in order to make a single
type.

• When needing to put arguments together, the first one is always a function
and anything following (including the stuff in parentheses) are arguments
for that function. Ex: (a b,c d) is a tuple, which has as type (t,t).
Therefore a is a function with b as an argument, etc.

• Something in parentheses is always a function of its own. Ex: a c (b c)

here a is a function, c and (b c) are arguments. And within the paren-
theses, b is a function with c as an argument.

• If you define one of your types as a function, and it also happens to have
another function inside of it (like a c (b c)), you don’t need to specify
the types of that function within the function you’re defining, just defining
the number of arguments is enough: a as (t t -> t).

• If you wanna be really cheeky, defining the wrong types can cause Clean
to print the cases for which the function doesn’t work in the error win-
dow. Sometimes simply copying the types of one of these cases fixes your
problem.

15

4.5.1 Currying

If only it was as nice as actual curry.

Currying can only be done with Higher Order Functions. It’s when you leave
out one or more arguments from the function in your higher order function. You
can then place that argument, after calling the higher order function itself. For
example, the following function takes a function and a number:

negate :: (a -> a) a -> a | ∼ a

negate f x = ∼f x

square x = x * x

Start = negate square 2

This will return -4, the negation of the argument squared. However, you can
also omit x in negate, by which you curry the function:

curriedNegate :: (a -> a) -> (a -> a) | ∼ a

curriedNegate f = ∼f

Start = negate square 2

This will also return -4, but clean chops the code up differently. First it calls
the function negate, which only takes one argument as you can see in the type
definition. So Clean will initially only look for one argument and read the code
as (negate square) 2.

The outcome however, is also a function which takes one argument. So clean
sees that the code in parentheses has a function as output, and then looks at
the next piece of code for the argument for that function, which in this case is 2.

Keep in mind that you can only curry the last arguments of a function. If
you wanna curry an argument but put it somewhere in the middle of your func-
tion, you have to use some forbidden Clean magic that you couldn’t find even
if you tried.

4.6 foldr and foldl

Never thought these shitty functions would be important enough to be an exam
topic.

In order to understand foldr and foldl, you need to under stand how Clean
reads lists. When you make the list [1,2,3] Clean interprets it as [1:[2:[3:[]]]].

Both fold functions require an operator / function, a starting value and a list,
in that order. They then apply that function to the list, much like map. But
unlike map, it combines elements of a list in a certain way, rather than changing
its elements.foldr as the following structure (might help you understand it):

16

foldr op r [a:x] = op a (foldr op r x)

foldr op r [] = r

There’s 2 ways to use the fold functions, with an operator and with a function
(which is often a λ-abstraction).

Let’s use foldr with (+) and 0 on our previous list. The function changes
all the : into the operator you passed it, and puts a 0 in the empty list to the
right (if using foldl it’ll place it on the left). Meaning that [1:[2:[3:[]]]]

turns into (1+(2+(3+(0)))), which is 6.

You might be wondering why you even need the 0. That’s because different
operators have different base values. When you add 0 to something, it stays the
same. If we wanted to get the product of a list instead of the sum, we would
write foldr (*) 1 xs, because multiplying something by 1 doesn’t change that
something.

For the other way of using the fold functions (with a function instead of an
operator) I’m gonna use a λ-abstraction with an accumulator and if-statement,
because that’s the only way I know how to do it.

The following λ-abstraction basically returns x if it’s higher than the accumu-
lator, otherwise it returns the accumulator, which stores the previous outcome
of the λ-abstraction (see λ - Abstractions, Accumulators, and The If-Operator
if you need to know more).

foldl (\x acc = if(x > acc) x acc) 0 xs

Applying this to foldr means that it loops through every element in the list
and returns the highest number.

According to my Clean logic, which isn’t always right cause it’s Clean after all,
the only major difference between the operator version and the function version
of foldr and foldl is that when passing it a function it actually doesn’t seem
to utilize the number you pass it. But I might be wrong about that.

17

5 Tips, Tricks & Miscellaneous

5.1 Program Reasoning

5.1.1 Induction

Induction can seem really confusing, but it’s actually really simple. Just like in
formal reasoning, there’s a template for proving induction. The only parts that
you actually have to think about are the base case and the induction step.

In this example we’ll use the operator ++ and the function map, which applies a
function to every element in a list. Let’s say you’re given the following definition
of the ++ operator on lists, and the map function:

(++) :: [a] [a] -> [a]

(++) [] ys = ys (1)

(++) [x:xs] ys = [x : xs ++ ys] (2)

map :: (a -> b) [a] -> [b]

map f [] = [] (3)

map f [x:xs] = [f x : map f xs] (4)

And you have to prove that map f (as ++ bs) = (map f as) ++ (map f bs).
So the mapping of the combined list of as and bs is the same as the mapping
of as combined with the mapping of bs.

The numbered lines in the definitions of ++ and map are free to use in your proof.

Prove: for all as :: [a] : map f (as ++ bs) = (map f

as) ++ (map f bs)

Proof: by induction on as

First up is the proof of the base case. For this, just make the argument you’re
applying induction to zero. You always apply induction to only 1 argument,
which in this case is as, so let’s take as and make it []. Now you have to
transform the equation so that both sides are equal:

Base case:

assume as = []

Prove: map f (as ++ bs) = (map f as) ++ (map f bs)

Proof:

(ass.) map f (as ++ bs) = (map f as) ++ (map f bs)

(1) <=> map f ([] ++ bs) = (map f []) ++ (map f bs)

(3) <=> map f bs = (map f []) ++ (map f bs)

(1) <=> map f bs = [] ++ (map f bs)

<=> map f bs = map f bs

Note that the ”<=>” is required for the proof, as are the indications of what

18

rules you used (like ”(3)”).

With the base case proven, now we move on to the induction step. Proving
the induction step is similar to the base case in the way that you aim to make
both sides of the equation equal. But before that, you have to substitute a part
of your induction step by your induction hypothesis (IH). The induction step
for a list is always the IH with an extra head:

Induction Case:

Assume property holds for certain as:

map f (as ++ bs) = (map f as) ++ (map f bs) (IH)

Prove:map f ([a:as] ++ bs) = (map f [a:as]) ++ (map f bs)

for all a

Proof:

(4) map f ([a:as] ++ bs) = (map f [a:as])++(map f bs)

<=> map f ([a:as] ++ bs) = [f a:map f as] ++ (map f bs)

(IH) <=> map f ([a:as] ++ bs) = [f a] ++ (map f as) ++ (map f bs)

(2) <=> map f ([a:as] ++ bs) = [f a] ++ map f (as ++ bs)

<=> map f [a:as ++ bs] = [f a] ++ map f (as ++ bs)

(4) <=> map f [a:as ++ bs] = [f a : map f (as ++ bs)]

<=> [f a : map f (as ++ bs)] = [f a : map f (as ++ bs)]

Base + Induction proof complete.

And that’s the format of induction proof that you have to use.

5.1.2 Applicative vs. Normal Order

A program can be evaluated in 2 ways: via applicative order (arguments first),
and via normal order (left-most function first). Both aim to reduce the pro-
gram / function to its normal form, which is the form when nothing needs to
be computed anymore, i.e. the output of the function.

As for an example, take the following code:

square n = n * n

inc n = n + 1

square inc n = square (inc n)

Start = square inc 7

This is reduction by applicative order, which is what Clean uses:

Start

= square inc 7

= square (inc 7)

= square (7 + 1)

= square 8

19

= 8 * 8

= 64

And this by normal order, which is what Java uses.

Start

= square inc 7

= square (inc 7)

= (inc 7) * (inc 7)

= (7 + 1) * (inc 7)

= 8 * (inc 7)

= 8 * (7 + 1)

= 8 * 8

= 64

5.2 Programming & Exam Tips

5.2.1 Writing a Function

There’s no one way to write a function, but there are some general steps you
can take with which you can cheese more than you’d think:

1. First determine the output of the function, and the ways you can (combine
stuff to) get that output. e.g. a function that loops through a list and
returns a Bool, can just call itself with the tail of the list, since that
function is also a Bool, and if you need to output a list or a list of lists,
keep the ways you can combine lists in mind, like : or ++.

2. Divide the stuff that you need to do into chunks, while thinking of Clean’s
limitations and possibilities (don’t thinks of the exact syntax yet). Also
check the StdEnv, maybe there’s a function in there that already solves a
part of your problem.

3. If you need arguments that aren’t passed by the original function and
that are always the same, or just something that loops a certain number
of times, use a local definition. Local definitions can be stacked, so don’t
skimp on ’em.

4. Write the patterns for the possible cases, starting with the most specific
cases (like the base case) and work your way to the most general one.

5. If there’s multiple cases that have the same pattern (e.g. when 2 arguments
are the same, do this. Otherwise, do that) use guards. You can also stack
guards, but make sure the indent is correct.

6. If you’re still stuck after this, it’s probably because of a trick with a spe-
cific type that you need to use (like the difference between the , and &

operators in list comprehensions), or some special Clean magic that only
the TA’s and Peter know.

20

In short, the golden combination for writing a function is usually determining
the output type(s), patterns, local definitions and guards. As for some general
tips when writing a function:

• When writing the actual code, remember that a single = sign is always
used to assign a value to either the output, or a type in the output (like
in a record type).

• Don’t forget the StdEnv!

• I can’t stress this enough but make sure you know the difference between
assigning a type (::) and assigning a value (=). This is especially import-
ant when working with record types.

• If you get a ”cannot unify types” error but you haven’t got a clue why,
try deleting the functions type definition, cause sometimes you just didn’t
write it properly.

5.2.2 Determining a Function’s Output

When trying to figure out the output of a function (something that’s going
to be asked on the exam), you have to look at the code like Clean does,
meaning that you first have to calculate the stuff ”in parentheses”. For ex-
ample, in the first exercise of the exam of June 2016 the output of the function
same begin [3,2,2,1,2] [3,2,1,2] is asked, with as function body:

same begin as bs = map fst (takeWhile (\(a,b) ->a == b)

[(a,b) \\ a <- as & b <- bs])

Start left, and determine how many and what kind of arguments each part needs.
map is a function that needs a function and a list. But the list is not that clear,
cause it’s this long thing in parentheses. So you first change that part into a list.

takeWhile is a function of type (a -> Bool) [a] -> [a]. And it outputs
all elements of a list for which the boolean holds. In this case the boolean is the
λ-abstraction (\(a,b) = a == b), which returns True is both elements of the
double are equal. This boolean is then applied to the list [(a,b) \\ a <- as & b <- bs].
Note the &, this means that it combines the elements of the list pair wise (so
only the ones with the same index).

Now that you know what each part produces, combine them into the solu-
tion of the function:

1. as = [3,2,2,1,2] and bs = [3,2,1,2]. The list comprehension out-
puts the pairwise combinations. so:

[(3,3), (2,2), (2,1), (1,2)]

2. takeWhile only takes the doubles whose elements have the same value:
[(3,3), (2,2)]

21

3. fst takes the first element of a double, and map applies it to the elements
of the list we just made. Making the eventual output of the function:

[3,2]

One more cheeky trick: if you don’t understand the definition of a function in
the exam, the name can actually reveal quite a bit.

5.3 Error Message Comprehension

Even reading ancient Greek would be easier than deciphering Clean’s error win-
dow. Here’s something to help you out:

• Linker error: could not create ’C:\Users...Exercise.exe’
Don’t worry, you just didn’t close your previous .exe window.
Close it and try again.

• Error [Exercise.icl,1,Start]: has not been declared
Your code is missing the ’Start =’ command.

• Type error [Exercise.icl,31,Start]:”...” cannot unify types:
[Int]
Int

You messed something up with the brackets. (), [] or {}

• Parse error [Exercise.icl,31;4,Type name]: upper case ident ex-
pected instead of <type>

You need to capitalize the first letter of your new type.

• Parse error [FQL.icl,58;116,nested guards]: sorry, but for the
time being there is a default alternative for nested guards ex-
pected

5.4 Troubleshooting

5.5 Secret StdEnv Commands

Because there’s not really a way to Ctrl + F at specific pages, I decided to make
the list of stdEnv commands a separate document: https://www.overleaf.

com/read/sjdrqxdrfkcd Won’t be working on this until after the exam. Use
Functional Programming in Clean for now.

5.6 Helpful Links

Functional Programming in Clean (2002)
http://www.mbsd.cs.ru.nl/publications/papers/cleanbook/CleanBookI.

pdf

A Concise Guide to Clean StdEnv (2011)
http://www.mbsd.cs.ru.nl/publications/papers/2010/CleanStdEnvAPI.pdf

22

https://www.overleaf.com/read/sjdrqxdrfkcd
https://www.overleaf.com/read/sjdrqxdrfkcd
http://www.mbsd.cs.ru.nl/publications/papers/cleanbook/CleanBookI.pdf
http://www.mbsd.cs.ru.nl/publications/papers/cleanbook/CleanBookI.pdf
http://www.mbsd.cs.ru.nl/publications/papers/2010/CleanStdEnvAPI.pdf

	Things Everyone Should Know
	Syntax
	Differences Compared to Java
	Operators

	Datatypes
	Basic Types
	Algebraic Type
	Data Structures
	Tuples
	Record Types
	Lists

	Overloading

	Functions
	Recursion
	For-loop in Clean

	Local Definitions
	 - Abstractions
	Accumulators

	The If-Operator
	Higher Order Functions
	Currying

	foldr and foldl

	Tips, Tricks & Miscellaneous
	Program Reasoning
	Induction
	Applicative vs. Normal Order

	Programming & Exam Tips
	Writing a Function
	Determining a Function's Output

	Error Message Comprehension
	Troubleshooting
	Secret StdEnv Commands
	Helpful Links

