Assignment 0

Jacob Vella

August 30, 2014

1 Problem 1

Theorem: if n is odd than n^2 is odd Direct proof: if n is odd, then n = 2k + 1if n^2 is odd, then $n^2 = 2k + 1$ $(2k + 1)^2 = 2k$ (2k + 1)(2k + 1) = 2k + 1 $4k^2 + 2k + 2k + 1 = 2k + 1$ $2(2k^2 + k + k) + 1$ 2k + 1 = 2k + 1

2 Problem 2

Theorem: If a, b > 225 and $a, b \in N^+$, then either a > 15 or b > 15Proof by contraposition: $(a \le 15)$ and $(b \le 15)$ then $(ab \le 225)$ if a = 15 and b = 15then $ab \ge 225$